博碩士論文 105329009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.14.248.252
姓名 鄭鎰明(Yih-Ming Cheng)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 藉由錫與釕修飾鉑奈米棒以促進酸性環境下之乙醇氧化反應
(Promotion of Ethanol Oxidation Reaction in Acidic Media by Tin and Ruthenium Decorated Platinum Nanorods)
相關論文
★ 高效能直接甲醇燃料電池陽極觸媒之製備、改質與鑑定研究★ 金-白金陰極催化劑應用於氧氣還原反應之製備與鑑定:金合金化以及氧化鈰添加之提升效應
★ 利用熱處理改質引發表面偏析現象以增進鉑釕觸媒之甲醇氧化反應活性★ 藉添加鈀鎳與鈀鈷合金觸媒提升氮化鋰的氫化性質
★ 鉑釕觸媒應用於乙醇氧化反應之結構與活性關係研究:錫的添加和氧化處理之提升效應★ 硼氫化鋰脫氫性質之研究:以添加鈀氫氧化鎳觸媒提升其脫氫反應
★ 表面活性劑對硒化鎘及硒化鋅鎘奈米合金在高溫有機金屬製程中的效應★ 鈀銅觸媒應用於鹼性溶液中之乙醇氧化反應其結構與活性關係研究
★ 鈀鈷添加物對於硼氫化鋰及鋰硼氮氫四元化合物脫氫性質之提升效應★ 成長溫度及配位體比例對硒化鋅鎘量子點光學性質的效應
★ 製備、改質及鑑定高效能鈀鈷觸媒應用於陰極氧還原反應★ 金屬(鈰、鈷、錫)氯化物和氧化物的添加對於硼氫化鋰脫氫性質之提升效應
★ 界面活性劑比例及沉澱現象對硒化鎘量子點光學性質的效應★ 雙元鉑基合金奈米顆粒及奈米棒之製備及其應用於氧氣還原反應
★ 錳的添加對於鉑鈷觸媒氧氣還原活性提升效應★ 鈀金鎳觸媒在鹼性乙醇氧化環境下結構與活性的關係
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 乙醇在低溫燃料電池中是很具吸引力的再生能源之一,因為其可以從農作物中大量取得。為了更有效的提升乙醇能量轉換效率,各式觸媒被開發以應用於乙醇燃料電池。在本研究中,探討了鉑基二元和三元催化劑(鉑錫、鉑釕和鉑錫釕)在酸性介質中乙醇氧化反應(ethanol oxidation reaction, EOR)的性能。另外,其結構/表面特性與電化學行為之間的關係則利用X光繞射儀,感應耦合電漿放射光譜儀,X射線光電子能譜儀,高解析度穿透式電子顯微鏡和電化學循環伏安法,線性掃描伏安法和計時電流法分析。
本研究分成兩部分,第一部分,分別製備長寬比為5.2、7.2和7.4的碳支撐鉑釕、鉑錫和鉑錫釕奈米棒應用於乙醇氧化反應。研究發現通過添加釕和/或錫到鉑中,可以改變鉑的晶格與化學狀態。電化學結果顯示,藉由釕和/或錫修飾的鉑可以進一步通過配體效應和雙功能機制有效促進乙醇氧化反應的性能,包括在標準電位為0.6伏特下的電流(I06)以及最高電流值(Imax)。另一方面,鉑錫在所有催化劑中顯示出最低的衰減值,即最佳的耐久度,這可歸因於表面上二氧化錫的保護,進而防止鉑在乙醇氧化反應期間溶解。

第二部分中,研究了三元觸媒鉑錫釕組成比例與乙醇氧化反應性能之間的關係。觸媒之鉑/錫/釕原子比為60/35/5、60/30/10、60/20/20和60/10/30。在乙醇氧化反應中,金屬態釕(錫)和二氧化釕(錫)藉由與水的高度活性化可促進一氧化碳氧化,提升了觸媒的電催化活性,而適度的二氧化錫含量(Pt60Sn20Ru20) 則有利於吸附在鉑表面上的乙醇解離,進而提升觸媒在低電位區域的電催化活性。經過2小時的計時電流法(CA)測試後,Pt60Sn20Ru20在初始和最終的測試結果都表現出較高的鉑質量活性,但其衰退量則遠高於Pt60Sn35Ru5的,這是由於表面二氧化錫提供了穩定性。因此最佳的乙醇氧化反應觸媒為錫/釕比例為1/1的Pt60Sn20Ru20。
摘要(英) Ethanol is one of the most attractive renewable energies in low temperature fuel cells because it can be produced in large quantities from agricultural products. In order to improve the energy conversion efficiency of ethanol, various catalysts have been developed for direct ethanol fuel cells (DEFCs). In this study, the ethanol oxidation reaction (EOR) performance of Pt-based binary and ternary catalysts (PtSn/C, PtRu/C, and PtSnRu/C) in an acidic media is systematically elucidated. The relationship between their structural/ surface properties and electrochemical behavior is investigated. The obtained nanorods (NRs) were characterized by X-ray diffraction (XRD), inductively coupled plasma-optical emission spectrometer (ICP-OES), X-ray photoelectron spectroscopy (XPS), and high resolution transmission electron microscopy (HRTEM). Electrochemical characterization was accomplished by cyclic voltammetry (CV), linear sweep voltammetry (LSV) and chronoamperometry (CA).
This study is divided into two parts. In the first part, carbon-supported PtSn, PtRu and PtSnRu NRs with an aspect ratio of 7.2, 5.2, and 7.4, respectively, are applied as electrocatalysts for EOR. Through Sn and /or Ru addition, the lattice and the chemical state of Pt can be modified. The electrochemical results show that Pt-decorated by Sn and Ru can effectively promote the EOR performance of Pt, both at I06 and Imax, by the ligand effect and bifunctional mechanism. On the other hand, PtSn displays the lowest decay in all catalysts, because the stable structure of SnO2 on the surface can prevent Pt from dissociation during the EOR.
In the second part, the relationship between Pt/Sn/Ru compositions and EOR performance of PtSnRu has been explored. Catalysts were prepared with Pt/Sn/Ru atomic ratios of 60/35/5, 60/30/10, 60/20/20, and 60/10/30. Ru(Sn) and Ru(Sn)O2 enhance the electrocatalytic activity due to the high activation of H2O and promotion of CO oxidation, while SnO2 can promote dissociative adsorption of ethanol on Pt surface, thus the electrocatalytic activity increases. After the 2-hour chronoamperometric (CA) tests, although higher Ru content catalyst presents higher mass activity both before and after CA test, its decay (61%) is far larger than that of lower Ru one (31%), owing to the stability effect of SnO2. The best EOR catalyst is found in the Pt60Sn20Ru20 with the Sn/Ru ratio of 1/1.
關鍵字(中) ★ 鉑錫
★ 鉑釕
★ 乙醇氧化反應
★ 表面組成
★ 計時電流法
★ 雙功能機制
★ 配體效應
★ 直接乙醇燃料電池
★ 鉑錫釕
關鍵字(英) ★ PtSn
★ PtRu
★ PtSnRu
★ Ethanol oxidation reaction
★ surface compositions
★ chronoamperometric
★ ligand effect
★ bifunctional mechanism
★ direct ethanol fuel cells
論文目次 摘要.......................................................i
Abstract................................................iii
致謝.....................................................v
Table of Contents.......................................vii
List of Figures..........................................x
List of Tables.........................................xiii
Chapter 1 Introduction...................................1
1.1 Mechanism of EOR.....................................2
1.2 PtSn and PtSnM (M = Ni, Co, Rh, Pd) catalysts for EOR .........................................................7
1.3 PtRu catalysts for EOR..............................10
1.4 The design of 1-D structure for EOR.................12
1.5 Motivation and approach.............................15
Chapter 2 Experimental Section..........................16
2.1 Preparation of carbon-supported Pt-based binary catalysts...............................................16
2.2 Preparation of carbon-supported PtSnRu/C ternary catalysts with different atomic ratio...................19
2.3 Characterization of catalysts.......................22
2.3.1 X-ray photoelectron spectroscopy (XPS)...........22
2.3.2 X-ray diffraction (XRD)..........................22
2.3.3 Inductively coupled plasma optical emission spectroscopy (ICP-OES)..................................24
2.3.4 Field-Emission scanning electron microscope and Energy-dispersive X-ray spectroscopy (SEM-EDS)..........24
2.3.5 High-resolution transmission electron microscopy (HRTEM).................................................24
2.3.6 Linear sweep voltammetry (LSV)...................24
2.3.7 Cyclic voltammetry (CV)..........................25
2.3.8 Chronoamperometric (CA)..........................25
Chapter 3 Results and Discussion........................27
3.1 The structural and EOR electrochemical properties of carbon-supported PtSn, PtRu and PtSnRu (Ru5) catalysts..27
3.1.1 HRTEM and ICP-OES characterizations..............27
3.1.2 XRD characterization.............................27
3.1.3 X-ray photoelectron spectroscopy (XPS)...........31
3.1.4 CV characterization..............................34
3.1.5 LSV characterization.............................36
3.1.6 CA characterization..............................39
3.1.7 Summary..........................................39
3.2 The structural and EOR electrochemical properties of carbon-supported PtSnRu catalysts with different Ru atomic ratios..................................................42
3.2.1 HRTEM and ICP-OES characterizations..............42
3.2.2 XRD characterization.............................42
3.2.3 XPS results......................................46
3.2.4 CV characterization..............................49
3.2.5 LSV characterization.............................49
3.2.6 CA characterization..............................53
3.2.7 Summary..........................................53
Chapter 4 Conclusions...................................56
References..............................................58
參考文獻 1. A. Brouzgou, A. Podias, P. Tsiakaras, J. Appl. Electrochem. 43 (2013) 119-136.
2. S. P. S. Badwal, S. Giddey, A. Kulkarni, J. Goel, S. Basu, Appl. Energy 145 (2015) 80-103.
3. X. Ren, M. S. Wilson, S. Gottesfeld, J. Electrochem. Soc. 143 (1996) 12-15.
4. M. S. Basualdo, D. Feroldi, R. Outbib, Electrochem, PEM Fuel Cells with Bio-Ethanol Processor Systems (2012).
5. L. Dong, R. R. S. Gari, Z. Li, M. M. Craig, S. Hou, Carbon 48 (2010) 781-787.
6. C. Rice, S. Ha, R. I. Masel, P.Waszczuk, A. Wieckowski, T. Barnard, J. Power Sources 111 (2002) 83-89.
7. S. Uhm, H. J. Lee, J. Lee, Phys. Chem. Chem. Phys. 11 (2009) 9326-9336.
8. X. Wang, J. M. Hu, I. M. Hsing, J. Electroanal. Chem. 562 (2004) 73-80.
9. J. P. I. de Souza, S. L. Queiroz, K. Bergamaski, E. R. Gonzalez, F. C. Nart, J. Phys. Chem. B 106 (2002) 9825-9830.
10. D. Zhang, Z. Ma, G. Wang, K. Konstantinov, X. Yuan, H. Liu, Electrochem. Solid State Lett. 9 (2006) 423-426.
11. S. Tanaka, M. Umeda, H. Ojima, Y. Usui, O. Kimura, I. Uchida, J. Power Sources 152 (2005) 34-39.
12. W. J. Zhou, W. Z. Li, S. Q. Song, Z. H. Zhou, L. H. Jiang, G. Q. Sun, Q. Xin, K. Poulianitis, S. Kontou, P. Tsiakaras, J. Power Sources 131 (2004) 217-223.
13. F. Vigier, C. Coutanceau, A. Perrard, E. M. Belgsir, C. Lamy, J. Appl. Electrochem. 34 (2004) 439-446.
14. Y. Shen, B. Gong, K. Xiao, L. Wang, ACS Appl. Mater. Interfaces 9 (2017) 3535-3543.
15. L. Li, H. Liu, C. Qin, Z. Liang, A. Scida, S. Yue, X. Tong, R. R. Adzic, S. S. Wong, ACS Appl. Nano Mater. 1 (2018) 1104-1115.
16. J. Datta, S. Singh, S. Das, N. R. Bandyopadhyay, Bull. Mater. Sci. 32 (2009) 643-652.
17. M. Li, A. Kowal, K. Sasaki, N. Marinkovic, D. Su, E. Korach, P. Liu and R. R. Adzic, Electrochim. Acta 55 (2010) 4331–4338.
18. Corti, Horacio R., Gonzalez, Ernesto R., Direct Alcohol Fuel Cells (2014).
19. F. Vigier, S. Rousseau, C. Coutanceau, J. M. Leger, C. Lamy, Topics in Catalysis 40 (2006) 111-121.
20. C. Lamy, S. Rousseau, E. M. Belgsir, C. Coutanceau, J. M. Leger, Electrochim. Acta 5 (2004) 3901-3908.
21. F. Vigier, C. Coutanceau, F. Hahn, E. M. Belgsir, C. Lamy, J. Electroanal. Chem. 563 (2004) 81-89.
22. W. Zhou, Z. Zhou, S. Song, W. Li, G. Sun, P. Tsiakaras, Q. Xin, Appl. Catal. B 46 (2003) 273-285.
23. J. Asgardi, J. CarlosCalderon, F. Alcaide, A. Querejeta, L. Calvillo, G. Garcia, Appl. Catal. B 168-169 (2015) 33-41.
24. Y. Ma, H. Wang, S. Ji, V. Linkov, R. Wang, J. Power Sources 247 (2014) 142-150.
25. K. Kakaei, Electrochim. Acta 165 (2015) 330-337.
26. A. Brouzgou, A. Podias, P. Tsiakaras, J. Appl. Electrochem. 43 (2013) 119-136.
27. S. Beyhan, C. Coutanceau, J. M. Le’ger, T. W. Napporn, F. Kad?rgan, Int. J. Hydrogen Energy 38 (2013) 6830-6841.
28. T. Bligaard, J. K. Norskov, Electrochim. Acta. 52 (2007) 5512-5516.
29. Y. Gauthier, M. Schmid, S. Padovani, E. Lundgren, P. Varga, G. Kresse, J. Redinger, Phys. Rev. Lett. 87 (2001) 3.
30. J. R. Kitchin, J. K. Norskov, M. A. Barteau, J. G. Chen, Phys. Rev. Lett. 93 (2004) 15.
31. M. S. Liao, C. R. Cabrera, Y. Ishikawa, Surf. Sci. 445 (2000) 267-282.
32. Y. Ishikawa, M. S. Liao, C. R. Cabrera, Surf. Sci. 463 (2000) 66-80.
33. M. Nakamura, R. Imai, N. Otsuka, N. Hoshi, O. Sakata, J. Phys. Chem. C 117 (2013) 18139-18143.
34. E. A. Lewis, C. U. Segre, E. S. Smotkin, Electrochim. Acta 54 (2009) 7181-7185.
35. W. P. Zhou, S. Axnanda, M. G. White, R. R. Adzic, J. Hrbek, J. Phys. Chem. C 115 (2011) 16467-16473.
36. A. Antolini, J. Power Sources 170 (2007) 1–12.
37. S. Rousseau, C. Coutanceau, C. Lamy, J. M. Leger, J. Power Sources 158 (2006) 18-24.
38. E. M. Cunha, J. Ribeiro, K. B. Kokoh, A. R. de Andrade, Int. J. Hydrogen Energy 36 (2011) 11034-11042.
39. A. Y. Lo, Y. C. Chung, W. H Hung, Y. C. Hsu, C. M. Tseng, W. L. Zhang, F. K. Wang, Electrochim. Acta 225 (2017) 207-214.
40. Y. W. Chang, C. W. Liu, Y. C. Wei, K. W. Wang, Electrochem. Commun. 11 (2009) 2161-2164.
41. A. Bonesi, G. Garaventa, W. E. Triaca, A. M. Castro Luna, Int. J. Hydrogen Energy 33 (2008) 3499-3501.
42. A. R. Bonesi, M. S. Moreno, W. E. Triaca, A. M. Castro Luna, Int. J. Hydrogen Energy 35 (2010) 5999-6004.
43. E. Ribadeneira, B. A. Hoyos, J. Power Sources 180 (2008) 238-242.
44. J. Tayal, B. Rawat, S. Basu, Int. J. Hydrogen Energy 36 (2011) 14884-14897.
45. J. Ribeiro, D. M. dos Anjos, K. B. Kokoh, C. Coutanceau, J. M. Leger, P. Olivi, A. R. de Andrade, Electrochim. Acta 52 (2007) 6997-7006.
46. E. Lee, A. Murthy, A. Manthiram, Electrochim. Acta 56 (2011) 1611-1618.
47. J. Ribeiro, D. M. dos Anjos, J. M. Leger, P. Olivi, A. R. de Andrade, G. Tremiliosi-Filho, K. B. Kokoh, J. Appl. Electrochem. 38 (2008) 653-662.
48. J. N. Tiwari, R. N. Tiwari, G. Singh, K. S. Kim, Nano Energy 2 (2013) 553-578.
49. M. Chatterjee, A. Chatterjee, S. Ghosh, I. Basumallick, Electrochim. Acta 54 (2009) 7299-7304.
50. X. Tian, L. Wang, P. Deng, Y. Chen, B. Xia, J. Energy Chem. 26 (2017) 1067-1076.
51. P. Song, S. S. Li, L. L. He, J. J. Feng, L. Wu, S. X. Zhong, A. J. Wang, RSC Adv. 5 (2015) 87061-87068.
52. Y. C. Tseng, H. S. Chen, C. W. Liu, T. H. Yeh, K. W. Wang, J. Mater. Chem. A 2 (2014) 4270-4275.
53. W. P. Zhou, M. Li, C. Koenigsmann, L. Wang, H. Liu, S. S. Wong, Energy Environ. Sci. 8 (2015) 350-363.
54. W. P. Zhou, M. Li, C. Koenigsmann, C. Ma, S. S. Wong, R. R. Adzic, Electrochim. Acta 56 (2011) 9824-9830.
55. D. R. M. Godoi, J. Perez, H. M. Villullas, J. Power Sources 195 (2010) 3394-3401.
56. M. Li, H. Zheng, G. Han, Y. Xiao, Y. Li, Catal. Commun. 92 (2017) 95-99.
57. H. Li, G. Sun, L. Cao, L. Jiang, Q. Xin, Electrochim. Acta 52 (2007) 6622-6629.
58. D. H. Lim, D. H. Choi, W. D. Lee, H. I. Lee, Appl. Catal. B 89 (2009) 484-493.
59. E. V. Spinace, M. Linardi, A. O. Neto, Electrochem. Commun. 7 (2005) 365-369.
60. J. H. Kim, S. M. Choi, S. H. Nam, M. H. Seo, S. H. Choi, W. B. Kim, Appl. Catal. B 82 (2008) 89.
61. P. G. Corradini, E. Antolini, J. Perez, J. Power Sources 275 (2015) 377-383.
62. D. J. Chen, Y. J Tong, Angew Chem. Int. Ed. 32 (2015) 9394-9398.
63. J. Mann, N. Yao, A. B. Bocarsly, Langmuir 22 (2006) 10432-10436
64. F. H. B. Lima, E. R. Gonzalez, Electrochim. Acta 53 (2008) 2963-2971.
65. R. Rizo, R. M. A. Ais, E. Padgett, D. A. Muller, M. J. Lazaro, J. S. Gullon, J. M. Feliu, E. Pastor, H. D. Abruna, J. Am. Chem. Soc. 140 (2018) 3791-3797.
66. C. W. Liu, Y. W. Chang, Y. C. Wei, K. W. Wang, Electrochim. Acta 56 (2011) 2574-2581.
67. S. Beyhan, J. M. Leger, F. Kad?rgan, Appl. Catal. B 144 (2014) 66-74.
68. M. T. M. Koper, T. E. Shubina, R. A. van Santen, J. Phys. Chem. B 106 (2002) 686-692.
指導教授 王冠文(Kuan-Wen Wang) 審核日期 2018-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明