參考文獻 |
[1]W.R. Grove, “On voltaic series and the combination of gases by platinum”, Philosophical Magazine Series 3, Vol. 14, pp. 127-130, (1839).
[2]G. Hoogers, (Ed.) “Fuel cell technology handbook. CRC press”. (2002).
[3]黃鎮江,「燃料電池」,全華科技圖書股份有限公司,2005
[4]A.L. Lee, R. F. Zabransky, and W. J. Huber, “Internal Reforming Development for Solid Oxide Fuel Cells”, Industrial & Engineering Chemistry Research, Vol. 29, pp. 766-773, (1990).
[5]L.M. Zhang and W.S. Yang, “Direct Ammonia Solid Oxide Fuel Cell Based on Thin Proton-conducting Electrolyte”, Journal of Power Sources, Vol. 179, pp. 92-95, (2008).
[6]M. Zunic, L. Chevallier, A. Radojkovic, G. Brankovic, Z. Brankovic, and E.D. Bartolomeo, “Influence of the Ratio Between Ni and BaCe0.9Y0.1O3-δ on Microstructural and Electrical Properties of Proton Conducting Ni-BaCe0.9Y0.1O3-δ Anodes”, Journal of Alloys and Compounds, Vol. 509, pp. 1157-1162, (2011).
[7]B.H. Rainwater, M.F. Liu, and M.L. Liu, “A More Efficient Anode Microstructure for SOFCs Based on Proton Conductors”, International Journal of Hydrogen Energy, Vol. 37, pp. 18342-18348, (2012).
[8]L. Bi, E. Fabbri, and E. Traversa, “Effect of Anode Functional Layer on the Performance of Proton-conducting Solid Oxide Fuel Cells (SOFCs)”, Electrochemistry Communications, Vol. 16, pp. 37-40, (2012).
[9]K. Xie, R.Q. Yan, and X.Q. Liu, “A Novel Anode Supported BaCe0.4Zr0.3Sn0.1Y0.2O3-δ Electrolyte Membrane for Proton Conducting Solid Oxide Fuel Cells”, Electrochemistry Communications, Vol. 11, 1618-1622, (2009).
[10]H. Moon, S.D. Kim, E.W. Park, S.H. Hyun, and H.S. Kim, “Characteristics of SOFC Single Cells with Anode Active Layer via Tape Casting and Co-firing”, International Journal of Hydrogen energy, Vol. 33, pp. 2826-2833, (2008).
[11]Z.H. Chen, R. Ran, W. Zhou, Z.P. Shao, and S.M. Liu, “Assessment of Ba0.5Sr0.5Co1-yFeyO3-δ (y = 0.0-1.0) for Prospective Application as Cathode for IT-SOFCs or Oxygen Permeating Membrane”, Electrochimica Acta, Vol. 52, pp. 7343-7351, (2007).
[12]C.A.J. Fisher, M. Yoshiya, Y. Iwamoto, J. Ishii, M. Asanuma, and K. Yabuta, “Oxide Ion Diffusion in Perovskite-structured Ba1-xSrxCo1-yFeyO2.5: A Molecular Dynamics Study”, Solid State Ionics, Vol. 177, pp. 3425-3431, (2007).
[13]W. Zhou, R. Ran, Z.P. Shao, R. Cai, W.Q. Jin, N.P. Xu, and J.M. Ahn, “Electrochemical Performance of Silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3-δ Cathodes Prepared via Electroless Deposition”, Electrochimica Acta, Vol. 53, pp. 4370-4380, (2008).
[14]B. Wei, Z. Lu, X.Q. Huang, J.P. Miao, X.Q. Sha, X.S. Xin, and W.H. Su, “Crystal Structure, Thermal Expansion and Electrical Conductivity of Perovskite Oxides BaxSr1-xCo0.8Fe0.2O3-δ (0.3 ? x ? 0.7)”, Journal of the European Ceramic Society, Vol. 26, pp. 2827-2832, (2006).
[15]S.M. Haile, G. Staneff, and K.H. Ryu, “Non-stoichiometry, Grain Boundary Transport and Chemical Stability of Proton Conducting Perovskites” Journal of Materials Science, Vol. 36, pp. 1149-1160, (2001).
[16]H. Inaba and H. Tagawa, “Ceria-based Solid Electrolytes”, Solid State Ionics, Vol. 83, pp.1-16, (1996).
[17]A. Arabac? and M.F. Oksuzomer, “Preparation and Characterization of 10 mol% Gd Doped CeO2 (GDC) Electrolyte for SOFC Applications”, Ceramics International, Vol. 38, pp. 6509-6515, (2012).
[18]L.P. Li and J.C. Nino, “Ionic Conductivity Across the Disorder-order Phase Transition in the SmO1.5-CeO2 System”, Journal of the European Ceramic Society, Vol. 32, pp. 3543-3550, (2012).
[19]S.C. Singhal and K. Kendall (Eds.), “High-temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications”, Elsevier Science (2004).
[20]T. Takahashi and H. Iwahara, “Ionic Conduction in Perovskite-type Oxide Solid Solution and Its Application to the Solid Electrolyte Fuel Cell”, Energy Conversion, Vol. 11, pp. 105-111, (1971).
[21]K.D. Kreuer, “Proton-conducting Oxides”, Annual Review of Materials Research, Vol. 33, pp. 333-359, (2003).
[22]T. Norby and Y. Larring, “Concentration and Transport of Protons in Oxides”, Current Opinion in Solid State and Materials Science, Vol. 2, pp. 593-599, (1997).
[23]E. Traversa, E.Fabbri, “Proton conducting for solid oxide fuel cells (SOFCs)”, Functional Materials for Sustainable Energy Applications.
[24]N. Agmon, “The Grotthuss mechanism”, Chemical Physics Letters, Vol. 244, pp. 456-462, (1995).
[25]M. Saiful Islam, “Ionic transport in ABO3 perovskite oxides: a computer modelling tour”, J. Mater. Chem., Vol. 10, pp. 1027-1038, (2000).
[26]K. Katahira , Y. Kohchi, T. Shimura, H. Iwahara, “Protonic conduction in Zr-substituted BaCeO3”, Solid State Ionics, Vol. 138 , pp. 91–98, (2000).
[27]K.H. Ryu, S.M. Haile, ” Chemical stability and proton conductivity of doped BaCeO3 -BaZrO3 solid solutions”, Solid State Ionics, Vol. 125, pp. 355–367, (1999).
[28]W.J. Zheng, C. Liu, Y. Yue, W.Q. Pang, “Hydrothermal synthesis and characterization of BaZr1-xMxO3-α (M = Al, Ga, In, x≦0.20) series oxides ”, Materials Letters, Vol. 30, pp. 93-97, (1997).
[29]J. Sui, L. Cao, Q. Zhu, L.Yu, Q. Zhang, L. Dong, “Effects of proton-conducting electrolyte microstructure on the performance of electrolyte-supported solid oxide fuel cells”, Journal of Renewable and Sustainable Energy, Vol. 5 (2), (2013) .
[30]R.B. Cervera, Y. Oyama, S. Yamaguchi, “Low temperature synthesis of nanocrystalline proton conducting BaZr0.8Y0.2O3?δ by sol–gel method”, Solid State Ionics, Vol. 178, pp.569-574, (2007).
[31]Y.M. Guo, Y. Lin, R. Ran, Z.P. Shao, ” Zirconium doping effect on the performance of proton-conducting BaZryCe0.8?yY0.2O3?δ (0.0 ? y ? 0.8) for fuel cell applications”, Journal of Power Sources, Vol. 193, pp.400–407, (2009).
[32]W. Zhou, Z.P. Shao, R. Ran, H.X. Gu, W.Q. Jin, N.P. Xu, “LSCF Nanopowder from Cellulose–Glycine-Nitrate Process and its Application in Intermediate-Temperature Solid-Oxide Fuel Cells”, The American Ceramic Society, Vol. 91, pp.1155-1162, (2008).
[33]X.Zhu, Z. Lu, B. Wei, X. Huang, Y. Zhang, W. Su, “A symmetrical solid oxide fuel cell prepared by dry-pressing and impregnating methods”, Journal of Power Sources, Vol. 196 (2), pp.729-733, (2011).
[34]Z. Wang, J. Qian, J. Cao, S. Wang, T. Wen, “A study of multilayer tape casting method for anode-supported planar type solid oxide fuel cells (SOFCs)”, Journal of Alloys and Compounds, Vol. 437 (1-2), pp.264-268, (2007).
[35]Thomas O. Mason, “Advanced ceramics” Encyclopadia Britannica, (2016).
[36]J. M. Serra, W. A. Meulenberg, “Thin?Film Proton BaZr0.85Y0.15O3 Conducting Electrolytes: Toward an Intermediate?Temperature Solid Oxide Fuel Cell Alternative”, Journal of the American Ceramic Society, Vol. 90 (7), 2082-2089, (2007).
[37]D. Konwar, B. J. Park, P. Basumatary, H. H. Yoon, “Enhanced performance of solid oxide fuel cells using BaZr0.2Ce0.7Y0.1O3?δ thin films”, Journal of Power Sources, Vol. 353, pp.254-259, (2017).
[38]H.S. Noh, K. J. Yoon, B.K. Kim, H.J. Je, H.W. Lee, J.H. Lee, J.W. Son, “The potential and challenges of thin-film electrolyte and nanostructured electrode for yttria-stabilized zirconia-base anode-supported solid oxide fuel cells”, Journal of Power Sources, Vol. 247, pp.105-111, (2014).
[39]R. L. Coble, “Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models”, Journal of Applied Physics, Vol. 32, pp.787, (1961).
[40]M.F. Ashby, “A First Report on Sintering Diagrams”, Acta Metallurgica, Vol. 22, pp.275-289, (1974).
[41]EG & G Technical Services Inc., Fuel Cell Handbook 7th Eds, U.S. , Department of Energy, (2004).
[42]E. Povoden-Karadeniz, “Thermodynamic Database of the La-Sr-Mn-Cr-O Oxide System and Applications to Solid Oxide Fuel Cells”, Swiss Federal Institute Of Technology Zurich, degree of doctor, (2008).
[43]N. Y. Hsu, S. C. Yen, K. T. Jeng, C. C. Chien, “Impedance studies and modeling of direct methanol fuel cell anode with interface and porous structure perspectives”, Journal Power Sources, Vol. 161, pp.232, (2006).
[44]J.H. Tong, Daniel Clark, Lisa Bernau, Michael Sanders, Ryan O’Hayre, “Solid-state reactive sintering mechanism for large-grained yttrium-doped barium zirconate proton conducting ceramics”, Journal of Materials Chemistry, Vol. 20, pp.6333-6341, (2010). |