博碩士論文 105329002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:18.188.112.220
姓名 陳逸修(Yi-Xue Chen)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 鋁電池自放電性質研究
(Self-discharge properties of rechargeable aluminum battery)
相關論文
★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響★ 陽極沉積釩氧化物於離子液體中之擬電容行為
★ 以電化學沉積法製備奈米氧化釩及錫在多孔鎳電極上與其儲電特性★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響
★ 離子液體電解質應用於石墨烯超級電容之特性分析★ 溶劑熱法合成三硫化二銻複合材料應用於鈉離子電池負極
★ 利用超臨界流體製備二氧化錫/石墨烯奈米複合材料 應用於鈉離子電池負極★ 電解質添加劑對鋅二次電池陽極電化學性質的影響
★ 電化學法所製備石墨烯及其硼摻雜改質之 超級電容特性分析★ 氫化二氧化鈦作為鋰、鈉、鎂鋰雙離子電池電極活性材料之電化學性質研究
★ 活性碳之粒徑與表面官能基以及所搭配的電解質配方對超高電容特性之影響★ 超臨界CO2合成SnO2、CoCO3與石墨烯複合材之儲鋰特性及陽極沉積層狀V2O5之儲鈉特性研究
★ 高濃度電解質於鋰電池知應用研究★ 熱解法製備硬碳材料應用於鈉離子電池負極
★ 活性碳粉之表面官能基及粒徑尺寸 對超高電容特性的影響★ 離子液體電解質於鈉離子電池之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在目前的電解液型二次電池系統中,可充式鋁電池(RAB)因其優異的特性,如高體積能量密度、高速率充放電穩定性、環保、地球蘊含豐富和低成本(基於陰極和陽極材料)。 此外,可充式鋁電池所使用的電解液系統具有不易燃、低毒性和低環境衝擊等諸多優點。 但是直到目前為止鋁電池還存在一些問題需要被克服,如低放電電壓平台、高腐蝕性電解質、嚴重的自放電現像以及謎團般的氯鋁酸鹽陰離子 - 石墨插層反應。
在本研究中,我們著重在鋁電池的自放電現象。 針對充放電速率、石墨正極材料的影響、鋁負極的純度和離子液體陽離子的類型進行系統性的研究。 通過上述努力,我們將推測鋁電池的自放電機制。 此外我們研究了摻混石墨正極材料(如氮摻雜,硼摻雜)中的自放電現象。 幸運的是,摻雜石墨不僅增強了電容值表現,同時增強了高速性能表現。 不幸的是,由於摻混後的高能量插層狀態(Stage-3 GIC),使得自放電問題變得更嚴重。 並通過NSRRC中的In-situ XRD分析,我們追?了充電和放電過程中石墨正極材料的相變化,做為該機制的有力證據。
最後,本研究首次對鋁電池的自放電機制及其影響因素進行了詳盡研究。 期待這些結果將有助於未來鋁電池商業化的發展。
摘要(英) Among current electrolyte-based rechargeable battery systems, the rechargeable aluminum battery (RAB) stands out for its predominating advantages, such as high-volumetric energy density, high-rate charge-discharge stability, eco-friendliness, earth abundance, and low-cost (based on cathode and anode material). Moreover, the electrolyte systems of the rechargeable aluminum battery have many advantages such as nonflammable, low toxicity and environmental impact. However, there still some problem need be overcome like low discharge voltage plateau, the highly corrosive electrolyte, serious self-discharge phenomenon and the puzzle for chloroaluminate anion–graphite intercalation reactions.
In this study, we focused on the self-discharge phenomenon. Systematical research on effect of cathode materials, purity of aluminum anode, charge/discharge rate and the type of ionic liquid cation will be carried out. With the aforementioned efforts, we will examine the self-discharge mechanism of aluminum batteries. Furthermore, we investigated the self-discharge phenomenon in doped graphite cathode materials (using N-doped, B-doped). Fortunately, doped graphite enhanced not only the capacitance but also the high-rate performance like our prediction. Unfortunately, the self-discharge problem became more serious due to the high energy state intercalation (Stage-3 GIC). With the In-situ XRD analysis in NSRRC, we traced the phase transformation in cathode materials from charge to self-discharge than discharge. The results were a powerful evidence for the mechanism in this study.
Finally, this study is the first research about the self-discharge mechanism for RAB and its impact factor. Perhaps the results will have contributed to the development of commercialization of aluminum batteries in the future.
關鍵字(中) ★ 鋁電池
★ 鋁離子電池
★ 自放電機制
關鍵字(英) ★ Rechargeable aluminum batteries
★ self-discharge mechanism
論文目次 中文摘要……………………………………………………………………………i
A b s t r a c t……………………………………………………………...…………ii
致謝…………………………………………………………………………….….iii
總目錄………………………………………………………………..…….….…...v
圖目錄……………………………………………………………..………….….viii
表目錄…………………………………………………………………..…………xv
(一) 前言 1
(二) 文獻回顧與探討 5
2-1鋁電池簡介 5
2-2-1 石墨正極材料在鋁電池的研究進展 7
2-2-2 鋁電池離子液體電解質研究進展 11
2-2-3 氯化鋁陰離子插層行為研究 14
2-3自放電性質研究的重要性 18
2-3-1超級電容器的自放電性質探討 18
2-3-2鋰電池的自放電性質探討 20
(三) 研究方法與實驗步驟 29
3-1微量元素摻混於石墨正極材料 29
3-2材料性質鑑定 30
3-2-1 材料結晶特性鑑定 31
3-2-2 材料元素組成鑑定 32
3-2-3 微量元素摻混量之分析 32
3-3鋁電池自放電性質量測流程 32
3-3-1 漿料與三極式鋁電池Cell之製備 32
3-3-2鋁電池使用之電解液配置 33
3-3-3鋁電池自放電性質量測 34
3-4 同步輻射XRD分析電池之製備 34
(四) 實驗結果與討論 36
4-1不同石墨材料在鋁電池表現及其自放電行為 36
4-1-1不同層間距之石墨的影響 36
4-1-2 不同充放電速率對自放電行為的影響 42
4-1-3 上平台充電電量控制對自放電影響 44
4-1-4 加長時間自放電測試 46
4-1-5 摻混硼、氮於石墨正極材料的影響 50
4-2 不同純度鋁負極材料鋁電池表現及自放電行為 60
4-3 不同陽離子種類對自放電行為的影響 67
4-4 自放電損失電量可逆性分析 75
4-5鋁電池自放電機制推測 76
(五) 結論 79
(六) 未來工作 79
參考文獻 80
參考文獻 [1] G. A. Elia et al., An Overview and Future Perspectives of Aluminum Batteries, Adv. Mater., 28 (2016) 7564.
[2] https://www.google.com.tw/#q=%E9%8B%81%E9%9B%A2%E5%AD%90%E9%9B%BB%E6%B1%A0+%E6%88%90%E6%9C%AC%E5%88%86%E6%9E%90.
[3] S.Q. Jiao et al., An Industrialized Prototype of The Rechargeable Al/AlCl3-[EMIm]Cl/graphite Battery and Recycling of The Graphitic Cathode into Graphene, Carbon 109 (2016) 276.
[4] J.T. Xu et al., Recent Progress in Graphite Intercalation Compounds for Rechargeable Metal (Li, Na, K, Al)-Ion Batteries, Adv. Sci., 4 (2017) 1700146.
[5] Z.A. Zafar et al., Cathode Materials for Rechargeable Aluminum Batteries: Current Status and Progress, J. Mater. Chem. A, 5 (2017) 5646.
[6] J. Park et al., Application of Ionic Liquids in Hydrometallurgy, Int. J. Mol. Sci. 15 (2014) 15320.
[7] M.C. Lin et al., An Ultrafast Rechargeable Aluminium-Ion Battery, N AT U R E, 520 (2015) 325.
[8] Y.P. Wu et al., 3D Graphitic Foams Derived from Chloroaluminate Anion Intercalation for Ultrafast Aluminum-Ion Battery, Adv. Mater., 28 (2016) 9218.
[9] H. Chen et al., A Defect-Free Principle for Advanced Graphene Cathode of Aluminum-Ion Battery, Adv. Mater., 29 (2017) 1605958.
[10] D. Y. Wang et al., Advanced rechargeable aluminium Ion battery with a high-quality natural graphite cathode, Nat. Commun., 8 (2017) 14283.
[11] K.V. Kraychyk et al., Efficient Aluminum Chloride?Natural Graphite Battery, Chem. Mater. 29 (2017) 4484.
[12] H.L. Wang et al., Anion-Effects on Electrochemical Properties of Ionic Liquid Electrolytes for Rechargeable Aluminum Batteries, J. Mater. Chem. A, 3 (2015) 22677.
[13] A.P. Abbott et al., Aluminium Electrodeposition Under Ambient Conditions, Phys Chem Chem Phys., 16 (2014) 14675
[14] M. Angell et al., High Coulombic Efficiency Aluminum-Ion Battery Using An AlCl3-Urea Ionic Liquid Analog Electrolyte,PNAS, 114 (2017) 834.
[15] M.S. Wu et al., Geometry and fast diffusion of AlCl4 cluster intercalated in graphite, Electrochimica Acta, 195 (2016) 158.
[16] S.C. Jung et al., Flexible Few-Layered Graphene for the Ultrafast Rechargeable Aluminum-Ion Battery, J. Phys. Chem. C, 120 (2016) 13384.
[17] Y.R Gao et al., Understanding Ultrafast Rechargeable Aluminum-Ion Battery from First-Principles, J. Phys. Chem. C, 121 (2017) 7131.
[18] P. Bhauriyal et al., The Staging Mechanism of AlCl4 Intercalation in a Graphite Electrode for an Aluminium-Ion Battery, Phys.Chem.Chem.Phys., 19 (2017) 7980.
[19] H.A. Andreas, Self-Discharge in Electrochemical Capacitors: A Perspective Article, Journal of The Electrochemical Society, 162 (2015) A5047.
[20] B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic, New York (1999).
[21] B.E. Conway et al., Diagnostic analyses for mechanisms of self-discharge of electrochemical capacitors and batteries, J. Power Sources, 65(1997) 53.
[22] B. W. Ricketts and C. Ton-That, Self-discharge of carbon-based supercapacitors with organic electrolytes, J. Power Sources, 89 (2000) 64.
[23] J. Niu et al., Requirements for performance characterization of C double-layer supercapacitors: Applications to a high specific-area C-cloth material, J. Power Sources, 156 (2006) 725.
[24] J.M. Black and H.A. Andreas, Prediction of the self-discharge profile of an electrochemical capacitor electrode in the presence of both activation-controlled discharge and charge redistribution, J. Power Sources, 195 (2010) 929.
[25] H. Yang and Y. Zhang, Self-discharge analysis and characterization of supercapacitors for environmentally powered wireless sensor network applications, J. Power Sources, 194 (2011) 8866.
[26] J.W. Graydon, Charge redistribution and ionic mobility in the micropores of supercapacitors J. Power Sources, 245 (2014) 822.
[27] H.S. Ryu et al., Self-discharge of lithium–sulfur cells using stainless-steel current-collectors, J. Power Sources, 140 (2005) 365.
[28] A.H. Whitehead and M. Schreiber, Current Collectors for Positive Electrodes of Lithium-Based Batteries, J. Electrochem. Soc., 152 ( 2005) A2105.
[29] M. Kazazi et al., Improving the Self-discharge Behavior of Sulfur-polypyrrole Cathode Material by LiNO3 Electrolyte Additive, Ionics, 20 (2014) 1291.
[30] N. Azimi et al., Fluorinated Electrolytes for Li-S Battery: Suppressing the Self-Discharge with an Electrolyte Containing Fluoroether Solvent, J. Electrochem. Soc, 162 (2015) A64.
[31] J.Q. Huang et al., Permselective Graphene Oxide Membrane for Highly Stable and Anti-Self-Discharge Lithium-Sulfur Batteries, ACS NANO, 9 (2015) 3002
[32] J.d. Zhu et al., Highly porous polyacrylonitrile/graphene oxide membrane separator exhibiting excellent anti-self-discharge feature for high-performance lithium-sulfur batteries, Carbon 101 (2016) 272.
[33] Y. Ozawa et al, Self-discharge study of LiCoO2 cathode materials, J. Power Sources, J. Power Sources, 119–121 (2003) 918.
[34] R. Yazami, Y. Ozawa, A kinetics study of self-discharge of spinel electrodes in Li/LixMn2O4 cells, J. Power Sources, 153 (2006) 251.
[35] G. Pistoia et al., Storage Characteristics of Cathodes for Li-ion Batteries, Electrochimica. Acta, 41 (1996) 2683.
[36] J. Manzi et al., Analysis of the self-discharge process in LiCoPO4 electrodes: bulks, Electrochimica. Acta, 179 (2015) 604.
[37] J. Manzi and S. Brutti, Surface chemistry on LiCoPO4 electrodes in lithium cells: SEI formation and self-discharge, Electrochimica. Acta, 222 (2016) 1839.
[38] X.L. Liao et al., Understanding self-discharge mechanism of layered nickel cobalt manganese oxide at high potential, J. Power Sources, 286 (2015) 551.
[39] J.H. Li et al., Insight into self-discharge of layered lithium-rich oxide cathode in carbonate-based electrolytes with and without additive, J. Power Sources, 324 (2016) 17.
[40] Fiona. B. Sillars et al., Effect of activated carbon xerogel pore size on the capacitance performance of ionic liquid electrolytes, Energy Environ. Sci., 4, (2011) 695.
[41] H.D. Jiao et al., A rechargeable Al-ion battery: Al/molten AlCl3-Urea/graphite, Chem. Commun., 53 (2017) 2331.
[42] H.P. Lei et al., Exfoliation Mechanism of Graphite Cathode in Ionic Liquids, ACS Appl. Mater. Interfaces 2017, 9, 36702.
指導教授 張仍奎(Jeng-Kuei Chang) 審核日期 2018-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明