博碩士論文 972411004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.21.46.13
姓名 賴宗炫(Tsung-Hsuan Lai)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 探討人類子宮內膜 L-selectin ligands 在月經週期的表現
(Exploring the expression of L-selectin ligands in human endometrium throughout the menstrual cycle)
相關論文
★ 發展酵素非限制性全基因體調控因子解析方法★ 大腸癌細胞株之 EGFR—K-ras 訊號路徑的基因微陣列實驗 與化學基因體學分析
★ 小鼠胚胎幹細胞株之建立及人類誘導多能性幹細胞之培養技術★ 由神經生長因子誘導之細胞內訊號路徑活化的化學基因體學分析
★ 細胞週期蛋白D1 mRNA在小鼠胚胎及成體幹細胞和腫瘤細胞中的表現及其受多能性相關因子影響之探討★ 運用時間序列微陣列資料來預測調控基因
★ 以大鼠嗜鉻性瘤細胞株建立神經訊號傳遞之細胞分子生物學模型★ 運用高通量基因微矩陣列方法解析由嗜鉻 細胞分化成神經細胞之全基因體的調控
★ 神經生長因子在神經分化中轉錄因子活性及基因調控機制之橫觀★ 以CRSBP-1接合子調控巨噬細胞的移動及吞噬
★ Chemogenomic and Molecular Analysis of Signal Transduction Pathways in In Vivo and In Vitro Models
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 人類胚胎著床過程是透過胚胎和子宮內膜分泌產生的各種因子為媒介產生交互作用。成功的著床需要發育良好的胚胎和荷爾蒙調校的子宮內膜精細的同步化完美配合,然而關於胚胎著床的基本機制到目前為止仍未得到解決。胚胎著床涉及到胚胎滋養層細胞和子宮內膜上皮表面細胞黏著作用。證據顯示細胞黏著分子在胚胎著床過程中扮演重要角色。細胞黏著分子家族包含四個主要成員:Integrins,Cadherins, Selectins 和 Immunoglobulins。這些細胞黏著分子表面配體 (ligand) 是醣蛋白成分,成為細胞之間黏著的媒介。其基本功能包括維持組織完整性、傷口癒合、細胞型態運動、細胞移動及腫瘤轉移。最近研究人員已經注意到L-selectin ligand (LSL)在子宮內膜受孕性的角色。這幾年關於人類子宮內膜表現LSL的研究報告指出,LSL在子宮內膜受孕性及胚胎成功著床方面扮演重要角色。LSL可成為評估子宮內膜受孕性和胚胎著床的生物標記。
然而到目前為止,我們對於人類子宮內膜細胞分泌的LSL所知甚少。而且,對於參與合成人類子宮內膜細胞LSL的基因表現仍是一無所知。本研究嘗試找出人類子宮內膜細胞LSL的種類,探討這些LSL分子在正常人自然月經週期不同時期的表現型態。同時比較正常生育能力與患有子宮肌腺症婦女的子宮內膜LSL的表現差異。
我們收集41位具正常月經週期及生育力的子宮肌瘤病人、42位子宮肌腺瘤病人、和11位停經婦女的子宮內膜檢體。採用免疫染色、西方墨點法、和反轉錄聚合酶鏈式反應來評估LSL的表現。統計以無母數Kruskal-Wallis檢定法分析LSL在月經週期各分期的表現。
以MECA-79抗體做免疫染色分析顯示LSL在自然週期分泌早期至分泌中期有強度表現,在停經子宮內膜具低度表現。反轉錄聚合酶鏈式反應結果發現在生殖年齡期婦女、子宮肌腺症患者及停經婦女皆可發現5種LSL基因表現:PODXL, EMCN, CD300LG, GLYCAM1和CD34。EMCN在自然月經週期增殖期和分泌早期有顯著差異表現 (P<0.05)。EMCN在自然月經週期子宮內膜受孕姓可能扮演重要角色。針對子宮肌腺症檢體分析,免疫染色結果顯示LSL在月經週期各分期呈現低度表現。但從增值期至分泌晚期LSL表現上升,唯獨在分泌中期(胚胎著床期)LSL表現下降。LSL平均histological scores (HSCOREs)分數在增值期與分泌前期和分泌晚期具統計顯著差異(P<0.05)。5種LSL基因在各分期呈現差異性表現,其中PODXL在各分期之間具有顯著差異表現(P<0.05)。上述結果暗示子宮肌腺症可能影響分泌中期子宮內膜LSL的產生,進而使子宮內膜受孕性和胚胎著床受到不良影響。
未來需要更多生體和體外實驗研究LSL系統相關機轉,以決定其在子宮內膜受孕性所扮演的真正角色。
摘要(英) In humans, embryo implantation is mediated by a variety of factors which are produced by both endometrium and blastocyst. Successful implantation requires a finely tuned synchrony between the embryo and receptive endometrium. However, fundamental questions about implantation remain unresolved. Initial step of embryo implantation is cell adhesion of trophectoderm of blastocyst and endometrial luminal epithelial cells of uterus, at their respective apical cell surfaces. Evidence suggests that the cell adhesion molecules play a unique role in human embryo implantation. The cell adhesion molecule family is composed of four members known as integrins, cadherins, selectins and immunoglobulins. These surface ligands, usually glycoproteins, mediate cell-to-cell adhesion. Their classical functions include maintenance of tissue integration, wound healing, morphogenic movements, cellular migrations and tumor metastasis. Recently, researchers have given attention to the role of L-selectin ligands (LSLs) in endometrial receptivity. The related works on the expression of LSLs in human endometrium in recent years have addressed the important role of LSLs in endometrial receptivity and successful implantation. LSLs may serve as a biomarker of endometrial receptivity and may help elucidate the implantation process.
However, to date, little is known about the types of LSLs in human endometrium. Furthermore, the expressions of the genes involved in the synthesis of LSLs are yet available in human being. In this study, we intend to identify the LSL genes in human endometrium and to study the expression patterns of LSLs in the fertile patients compared with the patients with adenomyosis.
We recruited 41 endometrial samples from reproductive-aged women with leiomyoma, 42 endometrial samples from patients with adenomyosis, and 11 endometrial samples from menopausal women. Immunohistochemistry, western blotting, and RT-PCR were performed to evaluate LSL expression. A non-parametric Kruskal-Wallis one-way analysis of variance with multiple comparisons was performed to examine differences among menstrual phases.
Immunohistochemistry analysis with MECA-79 Ab revealed strong LSL expression from the early through the mid-secretory phase in natural cycle and low expression in menopausal endometrium. Five LSL genes were found in reproductive, adenomyotic and menopausal endometrium by RT-PCR: PODXL, EMCN, CD300LG, GLYCAM1, and CD34. EMCN differed significantly between the proliferative and early-secretory phases in natural cycle (P<0.05). The significant expression of EMCN between the proliferative and early-secretory phases might play a vital role in endometrial receptivity in natural cycle. In adenomyosis, Immunohistochemistry showed that LSL is expressed with weak intensity in the endometrium in all phases. In the luminal epithelium, LSL expression increased from the proliferative to the late-secretory phase but decreased in the mid-secretory phase (the period of implantation). There were significant differences in the mean histological scores (HSCOREs) among the proliferative, early-secretory, and late-secretory phases (P<0.05). The expression patterns of five LSL genes occurred differentially among phases. Moreover, PODXL differed significantly among phases (P<0.05). The results showed that adenomyosis may cause abnormalities in LSL production in the nid-secretory phase, which may contribute to impaired endometrial receptivity and implantation failure.
Further studies in vitro and in vivo are required to determine the mechanisms related to the LSL system in human endometrium and to determine its role in endometrial receptivity.
關鍵字(中) ★ 子宮內膜
★ 月經週期
★ 子宮肌腺症
★ 子宮肌瘤
關鍵字(英) ★ L-selectin ligand
★ endometrium
★ adenomyosis
★ leiomyoma
★ menstrual cycle
論文目次 中文摘要 I
ABSTRACT III
TABLE OF CONTENTS VI
LIST OF TABLE IX
LIST OF FIGURE X
LIST OF SUPPLEMENTS TABLE XI
LIST OF SUPPLEMENTS FIGURE XII
CHAPTER 1. INTRODUCTION 1
CHAPTER 2. MATERIALS AND METHODS 6
2.1 SAMPLE COLLECTION 6
2.1.1 NORMAL ENDOMETRIAL SAMPLES COLLECTED FROM PATIENTS WITH LEIOMYOMA 6
2.1.2 ADENOMYOTIC ENDOMETRIA COLLECTED FROM PATIENTS WITH ADENOMYOSIS 7
2.1.3 ENDOMETRIAL SAMPLES WITHOUT SEX HORMONE STIMULATION COLLECTED FROM MENOPAUSAL WOMEN 7
2.2 IMMUNOHISTOCHEMISTRY 8
2.3 REVERSE-TRANSCRIPTION POLYMERASE CHAIN REACTION (RT-PCR) 9
2.4 WESTERN BLOT ANALYSIS 11
2.5 STATISTICS 13
CHAPTER 3. RESULTS 14
3.1 STRONG LSL EXPRESSION WAS FOUND FROM THE EARLY TO MID-SECRETORY PHASE OF THE NATURAL CYCLE. FIVE LSL GENES WERE DETECTED IN HUMAN ENDOMETRIUM AND THE EXPRESSION PATTERNS REVEALED VARIATION AMONG THE PHASES. 14
3.1.1 DEMOGRAPHIC DATA OF THE SUBJECTS AT DIFFERENT PHASES OF THE NATURAL CYCLE 14
3.1.2 MEAN EPITHELIAL LUMINAL HSCORE HAS SIGNIFICANT DIFFERENCES AMONG PROLIFERATIVE, EARLY SECRETORY PHASES, MID-SECRETORY PHASES, AND LATE SECRETORY PHASES 15
3.1.3 FIVE LSL GENES WERE DETECTED IN HUMAN ENDOMETRIUM AND THE EXPRESSION PATTERNS REVEALED VARIATION AMONG THE PHASES. EMCN ARE SIGNIFICANTLY DIFFERENT BETWEEN THE PROLIFERATIVE AND EARLY-SECRETORY PHASES 17
3.2 LSL EXPRESSIONS WERE DOWNREGULATED IN THE LUMINAL EPITHELIUM OF ADENOMYOTIC ENDOMETRIA IN THE MID-SECRETORY PHASE. THE MRNA EXPRESSIONS OF THE LSL GENES OCCURRED DIFFERENTIALLY AMONG THE PHASES, BUT ONLY PODXL DIFFERED SIGNIFICANTLY. 22
3.2.1 DEMOGRAPHIC DATA OF THE SUBJECTS WITH ADENOMYOSIS AT DIFFERENT PHASES OF THE MENSTRUAL CYCLE 22
3.2.2 LSL WAS WEAKLY EXPRESSED IN THE LUMINAL AND GLANDULAR EPITHELIUM OF THE ENDOMETRIUM IN ALL PHASES AND LSL WERE DOWNREGULATED IN THE LUMINAL EPITHELIUM OF ADENOMYOTIC ENDOMETRIA IN THE MID-SECRETORY PHASE 24
3.2.3 FIVE LSL GENES WERE DETECTED IN ADENOMYOTIC ENDOMETRIA AND PODXL DIFFERED SIGNIFICANTLY AMONG THE PHASE 28
CHAPTER 4. DISCUSSION AND CONCLUSION 33
4.1 FIVE LSL GENES INCLUDING PODXL, EMCN, GLYCAM1, CD300LG, AND CD34 COULD EXPRESS IN HUMAN ENDOMETRIUM THROUGHOUT THE NATURAL MENSTRUAL CYCLE. EMCN EXPRESS SIGNIFICANTLY BETWEEN THE PROLIFERATIVE AND THE EARLY-SECRETORY PHASES MIGHT HIGHLIGHT ITS POTENTIAL IMPORTANCE IN ENDOMETRIAL RECEPTIVITY. 33
4.2 LSL EXPRESSIONS WERE DOWNREGULATED IN THE LUMINAL EPITHELIUM OF ADENOMYOTIC ENDOMETRIA IN THE MID-SECRETORY PHASE. PODXL DIFFERED SIGNIFICANTLY AMONG THE PHASES. THE RESULTS SHOWED THAT ADENOMYOSIS MAY CAUSE ABNORMALITIES IN LSL PRODUCTION, WHICH MAY CONTRIBUTE TO IMPAIRED ENDOMETRIAL RECEPTIVITY AND IMPLANTATION FAILURE. 39
4.3 CONCLUSION 44
REFERENCE 46
SUPPLEMENTS 52
APPENDIX 62
參考文獻 [1] Diedrich K, Fauser BC, Devroey P, Griesinger G. The role of the endometrium and embryo in human implantation. Hum Reprod Update 2007;13(4):365-77.
[2] Lindhard A, Bentin-Ley U, Ravn V, Islin H, Hviid T, Rex S, et al. Biochemical evaluation of endometrial function at the time of implantation. Fertil Steril 2002;78(2):221-33.
[3] Giudice LC. Potential biochemical markers of uterine receptivity. Hum Reprod 1999;14 Suppl 2:3-16.
[4] Cavagna M, Mantese JC. Biomarkers of endometrial receptivity--a review. Placenta 2003;24 Suppl B:S39-47.
[5] Paulson RJ, Sauer MV, Lobo RA. Embryo implantation after human in vitro fertilization: importance of endometrial receptivity. Fertil Steril 1990;53(5):870-4.
[6] Navot D, Bergh P. Preparation of the human endometrium for implantation. Annals of the New York Academy of Sciences 1991;622:212-9.
[7] Noyes RW, Hertig AT, Rock J. Dating the endometrial biopsy. Fertil Steril 1950;1(1):3-25.
[8] Nardo LG, Bartoloni G, Di Mercurio S, Nardo F. Expression of alpha(v)beta3 and alpha4beta1 integrins throughout the putative window of implantation in a cohort of healthy fertile women. Acta Obstet Gynecol Scand 2002;81(8):753-8.
[9] Nardo LG, Sabatini L, Rai R, Nardo F. Pinopode expression during human implantation. Eur J Obstet Gynecol Reprod Biol 2002;101(2):104-8.
[10] Simon C, Moreno C, Remohi J, Pellicer A. Molecular interactions between embryo and uterus in the adhesion phase of human implantation. Hum Reprod 1998;13 Suppl 3:219-32; discussion 33-6.
[11] Zhu LJ, Cullinan-Bove K, Polihronis M, Bagchi MK, Bagchi IC. Calcitonin is a progesterone-regulated marker that forecasts the receptive state of endometrium during implantation. Endocrinology 1998;139(9):3923-34.
[12] Dimitriadis E, White CA, Jones RL, Salamonsen LA. Cytokines, chemokines and growth factors in endometrium related to implantation. Hum Reprod Update 2005;11(6):613-30.
[13] Tranguch S, Daikoku T, Guo Y, Wang H, Dey SK. Molecular complexity in establishing uterine receptivity and implantation. Cell Mol Life Sci 2005;62(17):1964-73.
[14] Achache H, Revel A. Endometrial receptivity markers, the journey to successful embryo implantation. Human reproduction update 2006;12(6):731-46.
[15] Genbacev OD, Prakobphol A, Foulk RA, Krtolica AR, Ilic D, Singer MS, et al. Trophoblast L-selectin-mediated adhesion at the maternal-fetal interface. Science 2003;299(5605):405-8.
[16] Zak I, Lewandowska E, Gnyp W. Selectin glycoprotein ligands. Acta Biochim Pol 2000;47(2):393-412.
[17] Zhang F, Zheng M, Qu Y, Li J, Ji J, Feng B, et al. Different roles of galectin-9 isoforms in modulating E-selectin expression and adhesion function in LoVo colon carcinoma cells. Mol Biol Rep 2009;36(5):823-30.
[18] Uchimura K, Rosen SD. Sulfated L-selectin ligands as a therapeutic target in chronic inflammation. Trends in immunology 2006;27(12):559-65.
[19] Fazleabas AT, Kim JJ. Development. What makes an embryo stick? Science 2003;299(5605):355-6.
[20] Margarit L, Gonzalez D, Lewis PD, Hopkins L, Davies C, Conlan RS, et al. L-selectin ligands in human endometrium: comparison of fertile and infertile subjects. Hum Reprod 2009;24(11):2767-77.
[21] Foulk RA, Zdravkovic T, Genbacev O, Prakobphol A. Expression of L-selectin ligand MECA-79 as a predictive marker of human uterine receptivity. J Assist Reprod Genet 2007;24(7):316-21.
[22] Dueholm M. Uterine adenomyosis and infertility, review of reproductive outcome after in vitro fertilization and surgery. Acta Obstet Gynecol Scand 2017;96(6):715-26.
[23] Fischer CP, Kayisili U, Taylor HS. HOXA10 expression is decreased in endometrium of women with adenomyosis. Fertil Steril 2011;95(3):1133-6.
[24] Wang PH, Su WH, Sheu BC, Liu WM. Adenomyosis and its variance: adenomyoma and female fertility. Taiwan J Obstet Gynecol 2009;48(3):232-8.
[25] Soave I, Wenger JM, Pluchino N, Marci R. Treatment options and reproductive outcome for adenomyosis-associated infertility. Curr Med Res Opin 2017:1-11.
[26] Harada T, Khine YM, Kaponis A, Nikellis T, Decavalas G, Taniguchi F. The Impact of Adenomyosis on Women′s Fertility. Obstet Gynecol Surv 2016;71(9):557-68.
[27] Maheshwari A, Gurunath S, Fatima F, Bhattacharya S. Adenomyosis and subfertility: a systematic review of prevalence, diagnosis, treatment and fertility outcomes. Hum Reprod Update 2012;18(4):374-92.
[28] Campo S, Campo V, Benagiano G. Adenomyosis and infertility. Reprod Biomed Online 2012;24(1):35-46.
[29] Hemmerich S, Butcher EC, Rosen SD. Sulfation-dependent recognition of high endothelial venules (HEV)-ligands by L-selectin and MECA 79, and adhesion-blocking monoclonal antibody. J Exp Med 1994;180(6):2219-26.
[30] Lai TH, Shih Ie M, Vlahos N, Ho CL, Wallach E, Zhao Y. Differential expression of L-selectin ligand in the endometrium during the menstrual cycle. Fertil Steril 2005;83 Suppl 1:1297-302.
[31] Budwit-Novotny DA, McCarty KS, Cox EB, Soper JT, Mutch DG, Creasman WT, et al. Immunohistochemical analyses of estrogen receptor in endometrial adenocarcinoma using a monoclonal antibody. Cancer Res 1986;46(10):5419-25.
[32] Lessey BA, Castelbaum AJ, Wolf L, Greene W, Paulson M, Meyer WR, et al. Use of integrins to date the endometrium. Fertil Steril 2000;73(4):779-87.
[33] Shimizu Y, Newman W, Tanaka Y, Shaw S. Lymphocyte interactions with endothelial cells. Immunol Today 1992;13(3):106-12.
[34] Picker LJ, Butcher EC. Physiological and molecular mechanisms of lymphocyte homing. Annu Rev Immunol 1992;10:561-91.
[35] Picker LJ. Mechanisms of lymphocyte homing. Curr Opin Immunol 1992;4(3):277-86.
[36] Liu C, Shao ZM, Zhang L, Beatty P, Sartippour M, Lane T, et al. Human endomucin is an endothelial marker. Biochem Biophys Res Commun 2001;288(1):129-36.
[37] Samulowitz U, Kuhn A, Brachtendorf G, Nawroth R, Braun A, Bankfalvi A, et al. Human endomucin: distribution pattern, expression on high endothelial venules, and decoration with the MECA-79 epitope. The American journal of pathology 2002;160(5):1669-81.
[38] Fukuda M, Hiraoka N, Akama TO, Fukuda MN. Carbohydrate-modifying sulfotransferases: structure, function, and pathophysiology. J Biol Chem 2001;276(51):47747-50.
[39] Lecce G, Meduri G, Ancelin M, Bergeron C, Perrot-Applanat M. Presence of estrogen receptor beta in the human endometrium through the cycle: expression in glandular, stromal, and vascular cells. J Clin Endocrinol Metab 2001;86(3):1379-86.
[40] Witek A, Mazurek U, Paul M, Bierzynska-Macyszyn G, Wilczok T. Quantitative analysis of estrogen receptor mRNA in human endometrium throughout the menstrual cycle using a real-time reverse transcription-polymerase chain reaction assay. Folia Histochem Cytobiol 2001;39 Suppl 2:116-8.
[41] Matsuzaki S, Fukaya T, Suzuki T, Murakami T, Sasano H, Yajima A. Oestrogen receptor alpha and beta mRNA expression in human endometrium throughout the menstrual cycle. Mol Hum Reprod 1999;5(6):559-64.
[42] Mangal R, Wiehle R, Poindexter 3rd A, Weigel N. Differential expression of uterine progesterone receptor forms A and B during the menstrual cycle. The Journal of steroid biochemistry and molecular biology 1996;63(4-6):195-202.
[43] Mylonas I, Jeschke U, Shabani N, Kuhn C, Balle A, Kriegel S, et al. Immunohistochemical analysis of estrogen receptor alpha, estrogen receptor beta and progesterone receptor in normal human endometrium. Acta Histochem 2004;106(3):245-52.
[44] Kurita T, Lee KJ, Cooke PS, Taylor JA, Lubahn DB, Cunha GR. Paracrine regulation of epithelial progesterone receptor by estradiol in the mouse female reproductive tract. Biol Reprod 2000;62(4):821-30.
[45] Snijders MP, de Goeij AF, Debets-Te Baerts MJ, Rousch MJ, Koudstaal J, Bosman FT. Immunocytochemical analysis of oestrogen receptors and progesterone receptors in the human uterus throughout the menstrual cycle and after the menopause. J Reprod Fertil 1992;94(2):363-71.
[46] Critchley HO, Saunders PT. Hormone receptor dynamics in a receptive human endometrium. Reprod Sci 2009;16(2):191-9.
[47] Fung HY, Wong YL, Wong FW, Rogers MS. Study of oestrogen and progesterone receptors in normal human endometrium during the menstrual cycle by immunocytochemical analysis. Gynecol Obstet Invest 1994;38(3):186-90.
[48] Lessey BA, Killam AP, Metzger DA, Haney AF, Greene GL, McCarty KS, Jr. Immunohistochemical analysis of human uterine estrogen and progesterone receptors throughout the menstrual cycle. J Clin Endocrinol Metab 1988;67(2):334-40.
[49] Bergeron C, Ferenczy A, Toft DO, Schneider W, Shyamala G. Immunocytochemical study of progesterone receptors in the human endometrium during the menstrual cycle. Lab Invest 1988;59(6):862-9.
[50] Lessey BA, Palomino WA, Apparao KB, Young SL, Lininger RA. Estrogen receptor-alpha (ER-alpha) and defects in uterine receptivity in women. Reprod Biol Endocrinol 2006;4 Suppl 1:S9.
[51] McEver RP. Selectins: initiators of leucocyte adhesion and signalling at the vascular wall. Cardiovasc Res 2015;107(3):331-9.
[52] Stadtmann A, Brinkhaus L, Mueller H, Rossaint J, Bolomini-Vittori M, Bergmeier W, et al. Rap1a activation by CalDAG-GEFI and p38 MAPK is involved in E-selectin-dependent slow leukocyte rolling. Eur J Immunol 2011;41(7):2074-85.
[53] Mueller H, Stadtmann A, Van Aken H, Hirsch E, Wang D, Ley K, et al. Tyrosine kinase Btk regulates E-selectin-mediated integrin activation and neutrophil recruitment by controlling phospholipase C (PLC) gamma2 and PI3Kgamma pathways. Blood 2010;115(15):3118-27.
[54] Herter JM, Rossaint J, Block H, Welch H, Zarbock A. Integrin activation by P-Rex1 is required for selectin-mediated slow leukocyte rolling and intravascular crawling. Blood 2013;121(12):2301-10.
[55] Zahr A, Alcaide P, Yang J, Jones A, Gregory M, dela Paz NG, et al. Endomucin prevents leukocyte-endothelial cell adhesion and has a critical role under resting and inflammatory conditions. Nat Commun 2016;7:10363.
[56] Kanki Y, Kohro T, Jiang S, Tsutsumi S, Mimura I, Suehiro J, et al. Epigenetically coordinated GATA2 binding is necessary for endothelium-specific endomucin expression. EMBO J 2011;30(13):2582-95.
[57] Park-Windhol C, Ng YS, Yang J, Primo V, Saint-Geniez M, D′Amore PA. Endomucin inhibits VEGF-induced endothelial cell migration, growth, and morphogenesis by modulating VEGFR2 signaling. Sci Rep 2017;7(1):17138.
[58] Selam B, Arici A. Implantation defect in endometriosis: endometrium or peritoneal fluid. J Reprod Fertil Suppl 2000;55:121-8.
[59] Lessey BA, Castelbaum AJ, Sawin SW, Buck CA, Schinnar R, Bilker W, et al. Aberrant integrin expression in the endometrium of women with endometriosis. J Clin Endocrinol Metab 1994;79(2):643-9.
[60] Xiao Y, Li T, Xia E, Yang X, Sun X, Zhou Y. Expression of integrin beta3 and osteopontin in the eutopic endometrium of adenomyosis during the implantation window. Eur J Obstet Gynecol Reprod Biol 2013;170(2):419-22.
[61] Sassetti C, Tangemann K, Singer MS, Kershaw DB, Rosen SD. Identification of podocalyxin-like protein as a high endothelial venule ligand for L-selectin: parallels to CD34. J Exp Med 1998;187(12):1965-75.
[62] Horrillo A, Porras G, Ayuso MS, Gonzalez-Manchon C. Loss of endothelial barrier integrity in mice with conditional ablation of podocalyxin (Podxl) in endothelial cells. Eur J Cell Biol 2016;95(8):265-76.
[63] Chen Q, Wang Y, Li Y, Zhao M, Nie G. Serum podocalyxin is significantly increased in early-onset preeclampsia and may represent a novel marker of maternal endothelial cell dysfunction. J Hypertens 2017;35(11):2287-94.
[64] Schopperle WM, DeWolf WC. The TRA-1-60 and TRA-1-81 human pluripotent stem cell markers are expressed on podocalyxin in embryonal carcinoma. Stem Cells 2007;25(3):723-30.
[65] Schopperle WM, Lee JM, Dewolf WC. The human cancer and stem cell marker podocalyxin interacts with the glucose-3-transporter in malignant pluripotent stem cells. Biochem Biophys Res Commun 2010;398(3):372-6.
[66] Thankamony SP, Sackstein R. Enforced hematopoietic cell E- and L-selectin ligand (HCELL) expression primes transendothelial migration of human mesenchymal stem cells. Proc Natl Acad Sci U S A 2011;108(6):2258-63.
[67] Tateno H, Matsushima A, Hiemori K, Onuma Y, Ito Y, Hasehira K, et al. Podocalyxin is a glycoprotein ligand of the human pluripotent stem cell-specific probe rBC2LCN. Stem Cells Transl Med 2013;2(4):265-73.
[68] Sidney LE, Branch MJ, Dunphy SE, Dua HS, Hopkinson A. Concise review: evidence for CD34 as a common marker for diverse progenitors. Stem Cells 2014;32(6):1380-9.
[69] Zhang H, Nieves JL, Fraser ST, Isern J, Douvaras P, Papatsenko D, et al. Expression of podocalyxin separates the hematopoietic and vascular potentials of mouse embryonic stem cell-derived mesoderm. Stem Cells 2014;32(1):191-203.
[70] Lai TH, Chang FW, Lin JJ, Ling QD. Gene expression of human endometrial L-selectin ligand in relation to the phases of the natural menstrual cycle. Sci Rep 2018;8(1):1443.
[71] Benagiano G, Brosens I. The endometrium in adenomyosis. Women′s health 2012;8(3):301-12.
[72] Bergh PA, Navot D. The impact of embryonic development and endometrial maturity on the timing of implantation. Fertil Steril 1992;58(3):537-42.
[73] Zhong Y, Li J, Wu H, Ying Y, Liu Y, Zhou C, et al. Effect of surgical intervention on the expression of leukemia inhibitory factor and L-selectin ligand in the endometrium of hydrosalpinx patients during the implantation window. Exp Ther Med 2012;4(6):1027-31.
[74] Doherty LF, Taylor HS. Leiomyoma-derived transforming growth factor-beta impairs bone morphogenetic protein-2-mediated endometrial receptivity. Fertil Steril 2015;103(3):845-52.
[75] Wacker MJ, Godard MP. Analysis of one-step and two-step real-time RT-PCR using SuperScript III. J Biomol Tech 2005;16(3):266-71.
[76] Wong ML, Medrano JF. Real-time PCR for mRNA quantitation. Biotechniques 2005;39(1):75-85.
[77] Gettemy JM, Ma B, Alic M, Gold MH. Reverse transcription-PCR analysis of the regulation of the manganese peroxidase gene family. Appl Environ Microbiol 1998;64(2):569-74.
指導教授 凌慶東(Qing-Dong Ling) 審核日期 2018-6-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明