博碩士論文 102389001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:126 、訪客IP:3.147.42.232
姓名 許凱迪(Kai-Ti Hsu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 質子傳輸型固態氧化物燃料電池之陽極支撐電解質材料製作及其性能之研究
(The study of fabrication and performance of anode supported electrolyte materials for proton conduction solid oxide fuel cells)
相關論文
★ (Zr48Cu36Al8Ag8)99.25Si0.75複材高溫塑性行為之研究★ 具鉭顆粒散布強化之鐵基金屬玻璃複材的合成及其性質之研究
★ 鋯摻雜對SrCe1-xZrxO3-δ (0.0≦x≦0.5) 氫傳輸透膜微結構與性質影響之研究★ 適用於生物駐植物之無毒鈦基金屬玻璃之合金設計
★ 利用急冷旋鑄及真空熱壓製備Zn4Sb3奈米/微米晶塊材之熱電性質與機械性質研究★ 鐵顆粒添加對鎂鋅鈣非晶質合金熱性質及機械性質影響之研究
★ Ba0.8Sr0.2Ce0.8-x-yZryInxY0.2O3-δ(x=0.05,0.1 y=0,0.1)固態氧化物燃料電池電解質材料燒 結能力、微結構與其導電性質之研究★ 鋯基與鈦基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質改善之研究
★ 添加鉭對鋯鋁鈷塊狀非晶質合金機械性質影響之研究★ 鐵基塊狀金屬玻璃熱塑成形性之研究
★ 鋯基金屬玻璃薄膜對鎂基塊狀金屬玻璃複材之機械性質與抗腐蝕性提升之研究★ 微量鉭顆粒添加對鋯-銅-鋁-鈷塊狀非晶質合金鋯銅析出相的演變及機械性質之影響
★ 雷射積層製造用鐵基金屬玻璃粉末與其工件性質之研究★ 鐵基金屬玻璃破裂韌性提升 及其積層製造用粉體製作之研究
★ 生物相容性鈦基金屬玻璃合金粉末用於積層製造之研製★ 低密度雙相富鋁高熵合金之微結構觀察與其機械性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要針對中高溫工作區間具有高質子導電率之SrCeO3和BaCeO3鈣鈦礦結構陶瓷材料進行研發,並嘗試應用於氫氣傳輸透膜與固態氧化物燃料電池。質子傳導型固態氧化物燃料電池因其具有良好的導電性,低活化能,且其工作溫度可降至500–800°C,對降低成本與延長電池壽命有明顯的效益。其主要燃料來源為氫氣,且氫氣可由甲醇、天然氣與化石燃料經分離純化加工而獲得。
首先,在氫氣傳輸透膜研究中,利用固態反應法可成功製備SrCe1-xZrxO3-δ (0.0 ? x ? 0.5)質子導體氧化物。藉由X光繞射儀,掃描式電子顯微鏡來鑑定材料晶體結構與觀察表面形貌;熱膨脹儀分析鋯含量摻雜對其收縮率和燒結性的影響。隨著鋯摻雜含量的增加會導致材料孔隙率隨之增加,且SrCe0.6Zr0.4O3-δ試片在1500oC燒結2小時可獲得最大孔隙率27.53%。同時將SrCe0.6Zr0.4O3-δ和SrZrO3利用束縛燒結成功製備出具多孔結構支撐層材料。此外,SrCe0.6Zr0.4O3-δ可不添加造孔劑與多階段燒結製程,即可製備成陶瓷支撐層材料,在氫氣傳輸透膜與氫氣純化應用上有其潛在優勢。
其次,在質子傳輸型固態氧化物燃料電池研究中,利用固態反應法可成功製備Ba0.8Sr0.2Ce0.6Zr0.2InxY0.2-xO3-δ氧化物質子導體氧化物,並探討銦摻雜對其在微觀結構、化學穩定性、導電性和燒結能力之影響。結果顯示,燒結溫度降至1450oC燒結4小時,可得到緻密結構之電解質Ba0.8Sr0.2Ce0.75In0.05Y0.2O3-δ,且導電率在800oC可達0.011 S cm-1。為了進一步提升質子傳輸型固體氧化物燃料電池之性能,分別從電解質與陽極材料進行製程上的改良。本研究選擇Ba0.8Sr0.2Ce0.75In0.05Y0.2O3-δ作為電解質材料並利用刮刀成型與共燒技術來製備陽極支撐電解質之單電池。調整氧化鎳與電解質之陽極材料成份比例,探討微結構、比表面積和導電率對其提升電池性能之影響。多孔結構的陽極材料提供燃料電池有足夠的機械強度與適當的路徑給予燃料氣體流入至電解質反應。另一方面,在刮刀成型技術上進行電解質厚度減薄製程的探討,其結果顯示單電池的表現隨著厚度減薄(60 μm至20 μm)可增加近兩倍之功率密度。在800、700與600oC下之單電池的功率密度分別達到314.2、259.5與150 mW cm-2。本研究在電解質減薄製程上對後續質子傳輸型固體氧化物燃料電池之製程應用上有很大的助益。
最後,探討並評估不同比例的合成氣燃料對質子傳輸型固體氧化物燃料電池之陽極支撐電解質單電池在性能表現之影響資料庫。結果發現,由於合成氣體中氫氣含量的減少與一氧化碳含量的增加,使得質子傳輸型單電池之功率密度逐漸下降。然而,合成氣體中產生的碳會沉積並阻擾陽極材料中鎳金屬的催化反應,進而影響電池性能的表現。因此,本研究結果顯示,電解質材料Ba0.8Sr0.2Ce0.75In0.05Y0.2O3-δ不僅具有高質子導電率,亦具有良好的化學穩定性,可應用於質子傳輸型固體氧化物燃料電池電解質材料之潛力。未來將嘗試製備平板型質子傳輸固體氧化物燃料單電池及其連接板零組件試製,預期可以建立高性能質子傳輸型固體氧化物燃料電池之陽極支撐電解質單電池的製程條件範圍。
摘要(英) In this study, the SrCeO3-based and BaCeO3-based perovskite ceramic materials with high proton conductivity were developed which can applied on hydrogen transport membranes (HTM) and solid oxide fuel cells in its high- and intermediate- working temperature. The proton-conducting SOFC (P+-SOFCs) can operate at relatively low temperature (500–800°C) because of their higher conductivity, lower activation energy, and reduces the capital costs and prolongs cell lifetime. The hydrogen, is the source for SOFC, can be obtained by separation and purification of methanol, natural gas and fossil fuels.
Firstly, according the published result of hydrogen transport membranes research, SrCe1-xZrxO3?δ (0.0 ? x ? 0.5) proton-conducting oxides can be successfully prepared using a solid state reaction method. In this study, the effect of the Zr contents on the microstructures, shrinkages, and sintering of these SrCe1-xZrxO3?δ (0.0 ? x ? 0.5) were systemically studied by using X-ray Diffraction, Scanning Electron Microscopy, and Thermal dilatometer analysis (TDA). The SEMs shows that the porosities of sintered SrCe1-xZrxO3?δ increased with increasing the Zr contents. The largest porosity about 27.53% could be obtained at the SrCe0.6Zr0.4O3-δ ceramics sintered at 1500oC for 2 h. Meanwhile, a flat HTM with porous supporting layers of SrCe0.6Zr0.4O3-δ and SrZrO3 was fabricated by constrained sintering. Therefore, the SrCe0.6Zr0.4O3-δ ceramic is suggested to be a potential support layer material without pore former addition and complex sintering process for HTM and hydrogen purification applications.
Second, according the published result of P+-SOFC research, Ba0.8Sr0.2Ce0.6Zr0.2 InxY0.2-xO3-δ proton-conducting oxides are prepared using a solid state reaction process. The effect of indium contents on the microstructures, chemical stability, electrical conductivity, and sintering ability of these Ba0.8Sr0.2Ce0.6Zr0.2InxY0.2-xO3-δ oxides were systemically investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and two probe conductivity analysis. A dense microstructure Ba0.8Sr0.2Ce0.75In0.05Y0.2O3-δ oxide can be prepared by sintering at 1450°C for 4 h which decreased about 200°C sintering temperature. Meanwhile, the optimum conductivity of Ba0.8Sr0.2Ce0.75In0.05Y0.2O3-δ oxide is 0.011 S cm-1 measured at 800°C. In order to enhance the performance of proton-conducting solid oxide fuel cell, the electrolytes and anodes were further improved by modifying the fabrication process. In this study, the laminated electrolyte of Ba0.8Sr0.2Ce0.75In0.05Y0.2O3-δ and anode layers which fabricated by tape casting and co-sintering. The sintered half-cell coated with Pt paste as cathode was prepared for anode supported electrolyte single cell. The effect of NiO contents on the microstructures, surface area, and electric conductivity of these Ni-Ba0.8Sr0.2Ce0.6Zr0.2Y0.2O3-δ anode materials were systemically investigated by tuning the optimum combination of NiO and electrolyte for fabricating the anode materials. The porous structure for the anode substrates not only provide the mechanical strength to the fuel cells, but also allow the fuel gases flow to the electrolyte membrane. On the other hand, the results of cell performance reveal that the powder density of the single cell increases two times with decreasing the thickness of electrolyte layer from 60 m to 20 m. The power density of single cell reaches to 314.2, 259.5, and 150 mW cm-2 at 800, 700, and 600°C, respectively. In this study, the reducing electrolytes process is helpful for proton-conducting solid oxide fuel cells applications.
Therefore, the anode supported proton-conducting electrolyte solid oxide fuel cells were fabricated and evaluate their performance and stability in H2/CO syngas with different ratio of hydrogen (H2), carbon monoxide (CO) fuels was investigated in this study. It was found that inceasing the CO-containg feed streams with decreasing hydrogen gas would gradually degrade the performance of the P+-SOFC. In addition, the carbon deposition will block the nickle catalyst reaction in the anode during the cell testing in CO-containg fuels surrroundings. Therefore, it was showed that the Ba0.8Sr0.2Ce0.75In0.05Y0.2O3-δ ceramic of P+-SOFC possess not only high protonic conductivity but also good chemical stability. In the future, we will try to fabricate the planar P+-SOFC single cell and P+-SOFC stack interconnect components. Moreover, we expect to establish the process window of fabricating the high performance anode supported P+-SOFC single cells.
關鍵字(中) ★ 固態氧化物燃料電池
★ 質子導體
★ 鈣鈦礦
★ 三相點
★ 阻抗
★ 合成氣
關鍵字(英) ★ Solid oxide fuel cells
★ Proton conductor
★ Perovskite
★ Triple-phase boundary
★ Impedance
★ Syngas
論文目次 Table of Contents
Chinese Abstract…………………………………………………………..…..……….I
English Abstract……………………………………………………………………...III
Acknowledgments……………………………………………………………..…….VI
Table of Contents…………………………………………………………………...VIII
List of Tables………………………………………………………….……………...XI
List of Figures…………………………………………………………….................XII
Explanation of Symbols………………………………………………………….XVIII
Chapter 1 Introduction………………………………………………………………..1
Chapter 2 Literature Review…………………………………………………………3
2.1 Fuel cells.……………………………………………………………................................3
2.2 SOFC……..……………………………………………………………………………….4
2.3 Principle of SOFC…………………………………………………………………….…..4
2.4 Electrolyte materials of SOFCs.……………………………………..................................6
2.4.1 Structure of electrolyte materials…………………..………………………………..7
2.4.1.1 Fluorite structure……………………………………………………………….….7
2.4.1.1.1 Zirconium oxide doping…………………………………………………………7
2.4.1.1.2 Cerium oxide doping……………………………………………………………8
2.4.1.2 Perovskite structure……………………………………………………………….8
2.4.1.2.1 Proton migration in a perovskite structure………………………………..……..9
2.5 Cathode materials of SOFCs……………………………………………………………..10
2.6 Anode materials of SOFCs………………………………………………………………12
2.7 Interconnects of SOFCs………………………………………………………………….15
2.8 Polarization curve……………………………………………………..............................16
2.8.1 Activation Polarization (voltage loss because of voltage overpotential)…………...18
2.8.2 Ohmic Polarization (voltage loss because of charge transport)…………………….19
2.8.3 Concentration Polarization (voltage loss because of mass transport)……………....20
2.9 Electrochemical impedance spectroscopy……………………………………………….21
2.10 Perovskite materials of electrolytes for P+-SOFCs……………………………………....25
2.10.1 BaCeO3-BaZrO3 based electrolytes………………………………………………25
2.10.2 Rare-earth-doped BaCeO3 based electrolytes…………………………………….26
2.10.3 Rare-earth co-doped BaCeO3 based electrolytes………………………………….28
2.10.4 SrCeO3 based electrolytes………………………………………….……………..29
Chapter 3 Motivation…………………………………………………………..…….33
Chapter 4 Experimental Procedures………………………………………..............36
4.1 Effects of zirconium oxide on the sintering of SrCe1-xZrxO3?δ……………………….…..37
4.1.1 Preparation of SrCe1-xZrxO3?δ (0.0 ? x ? 0.5) powders…………………………….37
4.1.2 Characterization of SrCe1-xZrxO3?δ (0.0 ? x ? 0.5) pellets…………………………37
4.1.3 Fabrication of HTM with multilayer structure……………………………………..38
4.2 Evolution of the sintering ability, microstructure, and cell performance of Ba0.8Sr0.2Ce0.75In0.05Y0.2O3-δ……………………………………………………………..40
4.3 The effect of reactive surface area of proton-conducting Ni-Ba0.8Sr0.2Ce0.6Zr0.2Y0.2O3-δ anodes on the cell performance………………………………………………………..…43
4.3.1 Preparation of BSCIY electrolyte and NiO-BSCZY anode powders........................43
4.3.2 Characterization of NiO-BSCZY anode pellets........................................................43
4.3.3 Fabrication of single cells.........................................................................................45
4.3.4 Electrochemical performance of single cells............................................................45
4.3.5 Three-dimension microstructure reconstruction.......................................................46
4.3.6 Fabrication and analysis of TEM samples.................................................................46
4.4 Improved cell performance of Ba0.8Sr0.2Ce0.75In0.05Y0.2O3-δ anode supported electrolyte via tape casting and co-sintering process…………………………………………………….47
4.4.1 Powder synthesis…………………………………………………………………..47
4.4.2 Single cell fabrication…………………………………………...............................47
4.4.3 Characterization of phase composition and microstructures of single cell…………48
4.4.4 Single cell testing…………………………………………………………………..48
4.5 Performance and stability of the Ba0.8Sr0.2Ce0.75In0.05Y0.2O3-δ proton-conducting solid oxide fuel cells by using H2/CO syngas………………………………………………….50
4.5.1 Preparation of electrolyte and anode powders...........................................................50
4.5.2 Fabrication of single cell…………………………………………………………...50
4.5.3 Electrochemical performance of single cells ............................................................51
4.5.4 Characterization of single cells ................................................................................51
Chapter 5 Results and Discussion………………………………………….………..53
5.1 Effects of zirconium oxide on the sintering of SrCe1-xZrxO3?δ ……………………..……53
5.2 Evolution of the sintering ability, microstructure, and cell performance of Ba0.8Sr0.2Ce0.75In0.05Y0.2O3-δ…………………………..…………………………………57
5.3 The effect of reactive surface area of proton-conducting Ni-Ba0.8Sr0.2Ce0.6Zr0.2Y0.2O3-δ anodes on the cell performance…………………………………………………………..63
5.4 Improved cell performance of Ba0.8Sr0.2Ce0.75In0.05Y0.2O3-δ anode supported electrolyte via tape casting and co-sintering process…………………………………………………….70
5.4.1 Structure characterization………………………………………………………….70
5.4.2 Fracture morphology analysis……………………………………………………...70
5.4.3 Performance of the fuel cell………………………………………………………..71
5.4.4 Electrochemical impedance of the fuel cell………………………………………...72
5.5 Performance and stability of the Ba0.8Sr0.2Ce0.75In0.05Y0.2O3-δ proton-conducting solid oxide fuel cells by using H2/CO syngas………………………………………………….76
Chapter 6 Conclusions...…………………………………………….……………….84
6.1 Effects of zirconium oxide on the sintering of SrCe1-xZrxO3?δ …………………………..84
6.2 Evolution of the sintering ability, microstructure, and cell performance of Ba0.8Sr0.2Ce0.75In0.05Y0.2O3-δ ……………..………………………………………………85
6.3 The effect of reactive surface area of proton-conducting Ni-Ba0.8Sr0.2Ce0.6Zr0.2Y0.2O3-δ anodes on the cell performance…………………………………………………………..86
6.4 Improved cell performance of Ba0.8Sr0.2Ce0.75In0.05Y0.2O3-δ anode supported electrolyte via tape casting and co-sintering process…..………………………………………………...87
6.5 Performance and stability of the Ba0.8Sr0.2Ce0.75In0.05Y0.2O3-δ proton-conducting solid oxide fuel cells by using H2/CO syngas………………………………………………….88
References………………………………...………………………………………….89
Tables………………………………………………………………………………..110
Figures……………………………………………………………………...……….118
參考文獻 [1] W.R. Grove, “On Voltaic Series and the Combination of Gases by Platinum”,
Philosophical Magazine Series 3, Vol. 14, pp. 127-130, 1839.
[2] J. Larminie and A. Dicks, Fuel Cell Systems Explained, 2nd edition, John Wiely
& Sons Inc., New York, United Sate of American, 2003.
[3] S.M. Haile, “Fuel Cell Materials and Components”, Acta Materialia, Vol. 51,
pp.5981-6000, 2003.
[4] E. Perry Murray, T. Tsai, and S. A. Barnett, “A direct-methane fuel cell with a
ceria-based anode”, Nature, Vol. 400, pp. 649-651, 1999.
[5] S.H. Chan, H.K. Ho, and Y. Tian, “Multi-level modeling of SOFC–gas turbine
hybrid system”, International Journal of Hydrogen Energy, Vol. 28, pp. 889-
900, 2003.
[6] A. Weber and E. Ivers-Tiffee, “Materials and Concepts for Solid Oxide Fuel
Cells (SOFCs) in Stationary and Mobile Applications”, Journal of Power Sources, Vol. 127, pp. 273-283, 2004.
[7] R.A. George and N.F. Bessette, “Reducing the Manufacturing Cost of Tubular
SOFC Technology,” Journal of Power Sources, Vol. 71, pp. 131-137, 1998.
[8] H.L. Hellman, and R. van den Hoed, ”Characterising fuel cell technology:
Challenges of the commercialisation process”, International Journal of Hydrogen Energy, Vol. 32(3), pp. 305-315, 2007.
[9] Z.P. Shao and S.M. Haile, “A high-performance cathode for the next generation
of solid-oxide fuel cells”, Nature, Vol. 431, pp.170-173, 2004.
[10] W. Zhou, Z.P. Shao, R. Ran, and R. Cui, “Novel SrSc0.2Co0.8O3-δ as a cathode
material for low temperature solid-oxide fuel cell”, Electrochemistry Communications, Vol. 10, pp. 1647-1651, 2008.
[11] T. Ishihara, J.W. Yan, M. Shinagawa, and H. Matsumoto, “Ni–Fe bimetallic
anode as an active anode for intermediate temperature SOFC using LaGaO3
based electrolyte film”, Electrochimica Acta, Vol. 52(4), pp. 1645-1650, 2006.
[12] L. Yang, C.D. Zuo, S.H. Wang, Z. Cheng, and M. Liu, “A novel composite
cathode for low-temperature SOFCs based on oxide proton conductors”,
Advanced Materials, Vol. 20, pp. 3280-3283, 2008.
[13] W.Y. Tan, Q. Zhong, M.S. Miao, and H.X. Qu, “H2S Solid oxide fuel cell based
on a modified Barium cerate perovskite proton conductor”, Ionics, Vol. 15, pp. 385-388, 2009.
[14] Z. Tao, L. Bi, Z. Zhu, and W. Liu, “Novel cobalt-free cathode materials
BaCexFe1-xO3-δ for proton-conducting solid oxide fuel cells”, Journal of Power
Sources, Vol. 194(2), pp. 801-804, 2009
[15] K.D. Kreuer, “Proton-conducting Oxides”, Annual Review of Materials
Research, Vol. 33, pp. 333-339, 2003.
[16] H. Inaba and H. Tagawa, “Ceria based solid electrolytes”, Solid State Ionics, Vol. 83, pp. 1-16, 1996.
[17] J. Guan, S.E. Dorris, B. Uthamalingam, and M.L. Liu, “Transport properties of
SrCe0.95Y0.05O3?δ and its application for hydrogen separation”, Solid State Ionics, Vol. 110, pp. 303-310, 1998.
[18] S.M. Haile, G. Staneff, and K.H. Ryu, “Non-stoichiometry, Grain Boundary Transport and Chemical Stability of Proton Conducting Perovskites” Journal of Materials Science, Vol. 36, pp. 1149-1160, 2001.
[19] C.W. Sun, J. Sun, G.L. Xiao, H.R. Zhang, X.P. Qiu, H. Li, and L.Q. Chen,
“Mesoscale Organization of Nearly Monodisperse Flowerlike Ceria Microspheres”, Journal of Physical Chemistry B, Vol. 110, pp. 13445-13452, 2006.
[20] N.V. Skorodumova, S.I. Simak, B.I. Lundqvist, I.A. Abrikosov, and B.
Johansson, “Quantum origin of the oxygen storage capability of ceria.”, Physical Review Letters, Vol. 89, pp. 166601-1-16601-4, 2002.
[21] Arabac? and M.F. Oksuzomer, “Preparation and Characterization of 10 mol% Gd Doped CeO2 (GDC) Electrolyte for SOFC Applications”, Ceramics International, Vol. 38, pp. 6509-6515, 2012.
[22] L.P. Li and J.C. Nino, “Ionic Conductivity Across the Disorder-order Phase
Transition in the SmO1.5-CeO2 System”, Journal of the European Ceramic Society, Vol. 32, pp. 3543-3550, 2012.
[23] M.S. Islam, “Ionic Transport in ABO3 Perovskite Oxides: A Computer Modelling Tour”, Journal of Materials Chemistry, Vol. 10, pp. 1027-1038, 2000.
[24] X.C. Liu, R.Z. Hong, and C.S. Tian, “Tolerance Factor and the Stability
Discussion of ABO3-type Ilmenite”, Journal of Materials Science: Materials in
Electronics, Vol. 20, pp. 323-327, 2009.
[25] W.C. ,Lee, C.Y. Huang, L.K. Tsao, and Y.C. Wu, “Chemical composition and
tolerance factor at the morphotropic phase boundary in (Bi0.5Na0.5)TiO3-based
piezoelectric ceramics”, Journal of the European Ceramic Society, Vol. 29, pp.
1443-1448, 2009.
[26] K.D. Kreuer, “Proton Conductivity: Material and Applications”, Chemistry of
Materials, Vol. 8, pp. 610-641, 1996.
[27] T. Norby, M. Wideroe, R. Glockner, and Y. Larring, “Hydrogen in Oxides”,
Dalton Transactions, Vol. 19, pp. 3012-3018, 2004.
[28] J.A. Kilner, S.J. Skinner, S.J.C. Irvine and P.P. Edwards, Functional materials for sustainable energy applications, Woodhead Pubishing Limited, Cambridge, United Kingdom, 2012.
[29] W.Y. Tan, Q. Zhong, M.S. Miao, H.X. Qu,“H2S Solid oxide fuel cell based on
a modified barium cerate perovskite proton conductor”, Ionics, Vol. 15, pp. 385-388, 2009.
[30] E. Ivers-Tiffee, "Electrolytes | solid: oxygen ions", Reference Module in
Chemistry, Molecular Sciences and Chemical Engineering, Encyclopedia of
Electrochemical Power Sources, Vol. 2, pp. 181-187, 2009.
[31] N.M. Sammes, B.R. Roy, “Fuel cells – solid oxide fuel cells | Cathodes”,
Reference Module in Chemistry, Molecular Sciences and Chemical
Engineering, from Encyclopedia of Electrochemical Power Sources, pp. 25-33,
2009.
[32] B. Wei, Z. Lu, X.Q. Huang, J.P. Miao, X.Q. Sha, X.S. Xin, and W.H. Su, “Crystal structure, thermal expansion and electrical conductivity of perovskite oxides BaxSr1-xCo0.8Fe0.2O3-δ (0.3 ? x ? 0.7)”, Journal of the European Ceramic Society, Vol. 26, pp. 2827-2832, 2006.
[33] Y. Lin, R. Ran, Y. Zheng, Z.P. Shao, W.Q. Jin, N.P. Xu, and J.M. Ahn, “Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3-δ as a potential cathode for anode-supported proton-conducting solid-oxide fuel cell”, Journal of Power Sources, Vol. 180, pp. 15-22, 2008.
[34] W. Zhou, R. Ran, R. Cai, Z.P. Shao,W.Q. Jin, and N. P. Xu, “Effect of a reducing
agent for silver on the electrochemical activity of an Ag/Ba0.5Sr0.5Co0.8Fe0.2O3-δ
electrode prepared by electroless deposition technique”, Journal of Power
Sources, Vol. 186, pp. 244-251, 2009.
[35] Z.J. Yang, W.B. Wang, J. Xiao, H.M. Zhang, F. Zhang, G.L. Ma, and Z.F. Zhou,
“A novel cobalt-free Ba0.5Sr0.5Fe0.9Mo0.1O3-δ-BaZr0.1Ce0.7Y0.2O3-α composite
cathode for solid oxide fuel cells”, Journal of Power Sources, Vol. 204, pp. 89-
93, 2012.
[36] B. Lin, H.P. Ding, Y.C. Dong, S.L. Wang, X.Z. Zhang, D.R. Fang, and G.Y. Meng, “Intermediate-to-low Temperature Protonic Ceramic Membrane Fuel Cells with Ba0.5Sr0.5Co0.8Fe0.2O3-δ-BaZr0.1Ce0.7Y0.2O3-δ Composite Cathode”, Journal of Power Sources, Vol. 186, pp. 58-61, 2009.
[37] L. Zhao, B.B. He, Y.H. Ling, Z.Q. Xun, R.R. Peng, G.Y. Meng, and XQ Liu,
“Cobalt-free Oxide Ba0.5Sr0.5Fe0.8Cu0.2O3-δ for Proton-conducting solid oxide
fuel cell cathode”, International Journal of Hydrogen Energy, Vol. 35, pp. 3769-
3774, 2010.
[38] K. Xie, R.Q. Yan, and X.Q. Liu, “A Novel Anode Supported
BaCe0.4Zr0.3Sn0.1Y0.2O3-δ Electrolyte membrane for proton conducting solid oxide fuel cells”, Electrochemistry Communications, Vol. 11, pp. 1618-1622, 2009.
[39] H. Moon, S.D. Kim, E.W. Park, S.H. Hyun, and H.S. Kim, “Characteristics of
SOFC single cells with anode active layer via tape casting and co-firing”, International Journal of Hydrogen energy, Vol. 33, pp. 2826-2833, 2008.
[40] K.V. Galloway and N.M. Sammes, “Fuel cells–solid oxide fuel cells |
Anodes, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, from Encyclopedia of Electrochemical Power Source, pp. 17-24, 2009.
[41] J. Rossmeisl, W.G. Bessler, “Trends in catalytic activity for SOFC anode materials”, Solid State Ionics, Vol. 178, pp. 1694-1700, 2008.
[42] B.H. Rainwater, M. Liu, M. Liu, “A more efficient anode microstructure for
SOFCs based on proton conductors”, International Journal of Hydrogen Energy,
Vol. 37, pp. 18342-18348, 2012.
[43] W.Z. Zhu and S.C. Deevi, “A review on the status of anode materials for solid oxide fuel cells”, Materials Science and Engineering A, Vol 362, pp. 228-239,
2003.
[44] B.C.H. Steele, “Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation
at 500°C”, Solid State Ionics, Vol. 129, pp. 95-110, 2000.
[45] K.V. Galloway and N.M. Sammes, Fuel cells-solid oxide fuel cells |
Anodes”, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, from Encyclopedia of Electrochemical Power Source, pp. 17-24, 2009.
[46] J.J. Haslam, A.Q. Pham, B.W. Chung, J.F. DiCarlo, and R.S. Glass, “Effects of the use of pore formers on performance of an anode supported solid oxide fuel cell”, Journal of the American Ceramic Society, Vol. 88(3), pp. 513-518, 2005.
[47] F. Zhao, and A.V. Virkar, “Dependence of polarization in anode-supported solid
oxide fuel cells on various cell parameters”, Journal of Power Sources, Vol. 141, pp. 79-95, 2005.
[48] C. Sun, and U. Stimming, “Recent anode advances in solid oxide fuel cells”,
Journal of Power Sources, Vol. 171, pp. 247-260, 2007.
[49] S. Mclntosh, R.J. Gorte, “Direct hydrocarbon solid oxide fuel cells”, Chemical
Reviews, Vol. 104, pp. 4845-4865, 2004.
[50] A. Sanson, P. Pinasco, and E. Roncari, “Influence of pore formers on slurry
composition and microstructure of tape cast supporting anodes for SOFCs”,
Journal of the European Ceramic Society, Vol. 28, pp. 1221-1226, 2008.
[51] A. Essoumhi, G. Taillades, M. Taillades-Jacquin, D.J. Jones and J. Roziere,
“Synthesis and characterization of Ni-cermet/proton conducting thin film
electrolyte symmetrical assemblies”, Solid State Ionics, Vol. 179, pp. 2155-2159, 2008.
[52] M. Zunic, L. Chevallier, A. Radojkovic, G. Brankovic, Z. Brankovic, and E.D. Bartolomeo, “Influence of the ratio between Ni and BaCe0.9Y0.1O3-δ on microstructural and electrical properties of proton conducting Ni-BaCe0.9Y0.1O3-δ anodes, Journal of Alloys and Compounds, Vol. 509, 1157-1162, 2011.
[53] J.W. Wu and X.B. Liu, “Recent development of sofc metallic interconnect”,
Journal of Materials Science & Technology, Vol. 26, pp. 293-305, 2010.
[54] E. Konysheva, U. Seeling, A. Besmehn, L. Singheiser, and K. Hilpert,
“Chromium vaporization of the ferritic steel crofer22 APU and ODS Cr5Fe1Y2O3 alloy”, Journal of Materials Science, Vol. 42, pp. 5778-5784, 2007.
[55] Z.G. Yang, G.G. Xia, P. Singh, and J.W. Stevenson, “Electrical contacts between
cathodes and metallic interconnects in solid oxide fuel cells”, Journal of Power Sources, Vol. 155, pp. 246-252, 2006.
[56] Y.D. Zhen, S.P. Jiang, S. Zhang, and V. Tan, “Interaction between metallic
interconnect and constituent oxides of (La, Sr)MnO3 coating of solid oxide fuel
cells”, Journal of the European Ceramic Society, Vol. 26, pp. 3253-3264, 2006.
[57] B.C.H. Steele and A. Heinzel, “Materials for fuel-cell technologies”, Nature, Vol. 414, pp. 345-352, 2001.
[58] T. Horita, H. Kishimoto, K. Yamaji, N. Sakai, Y.P. Xiong, M.E. Brito, and H.
Yokokawa, “Effects of silicon concentration in SOFC alloy interconnects on the formation of oxide scales in hydrocarbon fuels”, Journal of Power Sources, Vol. 157, pp. 681-687, 2006.
[59] H.S. Seo, G. Jin, J.H. Jun, D.H. Kim, and K.Y. Kim, “Effect of reactive elements
on oxidation behaviour of Fe-22Cr-0.5Mn ferritic stainless steel for a solid oxide fuel cell interconnect”, Journal of Power Sources, Vol. 178, pp. 1-8, 2008.
[60] Z.G. Yang, K.S. Weil, D.M. Paxton, and J.W. Stevenson, “Selection and
evaluation of heat-resistant alloys for SOFC interconnect applications”, Journal
of The Electrochemical Society, Vol. 150, pp. A1188-A1201, 2003.
[61] J. Li, J. Pu, J.Z. Xiao, and X.L. Qian, “Oxidation of haynes 230 alloy in reduced
temperature solid oxide fuel cell environments”, Journal of Power Sources, Vol.
139, pp. 182-187, 2005.
[62] J. Pu, J. Li, B. Hua, and G.Y. Xie, “Oxidation kinetics and phase evolution of a
Fe-16Cr alloy in simulated SOFC cathode atmosphere”, Journal of Power Sources, Vol. 158, pp. 354-360, 2006.
[63] S.H. Kim, J.Y. Huh, J.H. Jun, J.H. Jun, and J. Favergeon, “Thin elemental
coatings of yttrium, cobalt, and yttrium/cobalt on ferritic stainless steel for SOFC interconnect applications”, Current Applied Physics, Vol. 10, pp. S86-S90, 2010.
[64] Y. Liu and D.Y. Chen, “Protective coatings for Cr2O3-forming interconnects of solid oxide fuel cells”, International Journal of Hydrogen Energy, Vol. 34, pp. 9220-9226, 2009.
[65] J. B. Goodenough, “Oxide-ion electrolytes”, Annual Review of Materials, Vol. 33, pp. 91-128, 2003.
[66] C. Sikalidis, “Advances in ceramics-synthesis and characterization, processing and specific applications”, InTech, 2011.
[67] C. Spiegel, Designing and building fuel cells, McGraw-Hill Professional, pp. 107-120, 2007.
[68] S.M. Haile, “Fuel cell materials and components”, Acta Materialia, Vol. 51, PP. 5981-6000, 2003.
[69] E. Povoden-Karadeniz, “Thermodynamic database of the La-Sr-Mn-Cr-O oxide system and applications to Solid Oxide Fuel Cells, Swiss Federal Institute of Technology Zurich, degree of doctor, 2008.
[70] Q.A. Huang, R. Hui, B.W. Wang, J.J. Zhang, “A review of AC impedance modeling and validation in SOFC diagnosis”, Electrochimica Acta, Vol. 52, pp. 8144-8164, 2007
[71] E. Barsoukov, J.R. Macdonald, “Impedance Spectroscopy, Theory, Experiment, and Applications, 2nd ed.”, Wiley Interscience Publications, 2005.
[72] A. Lasia, “Electrochemical impedance spectroscopy and its applications”, Modern Aspects of Electrochemistry”, Kluwer Academic/Plenum Publishers, New York, Vol. 32, pp. 143-248, 1999.
[73] R. O. Hayre, S. W. Cha, W. Colella, F. B. Prinz, “Fuel Cell Fundamentals, 3rd
edition, John Wiely & Sons Inc., 2016.
[74] N.Y. Hsu, S.C. Yen, K.T. Jeng, and C.C. Chien, “Impedance studies and modeling of direct methanol fuel cell anode with interface and porous structure perspectives”, Journal of Power Sources, Vol. 161(1), pp. 232-239, 2006.
[75] Z. Shao, W. Zhou, Z. Zhu, “Fabbanced synthesis of materials for intermediate-temperature solid oxide fuel cells”, Progress in Materials Science, Vol. 57(4), pp. 804-874, 2012.
[76] T. Takahashi and H. Iwahara, “Solid-state ionics: protonic conduction in
perovskite type oxide solid solution”, Revue De Chimie Minerale, Vol. 17, pp.
243-253, 1980.
[77] H. Yugami, Y. Shibayama, T. Hattori and M. Ishigame, “Proton diffusivity in
SrZrO3: Sc3+ single crystals studied by infrared absorption spectroscopy”, Solid
State Ionics, Vol. 79, pp. 171-176, 1995.
[78] T. Norby, and Y. Larring, “Concentration and transport of protons in oxides”,
Current Opinion in Solid State and Materials Science, Vol. 2, pp. 593-99, 1997.
[79] N. Taniguchi, C. Nishimura, and J. Kato, “Endurance against moisture for protonic conductors of perovskite-type ceramics and preparation of practical conductors”, Solid State Ionics, Vol. 145, pp. 349-355, 2001.
[80] C.W. Tanner, and A.V. Virkar, “Instability of BaCeO3 in H2O?containing
atmospheres”, Journal of the Electrochemical Society, Vol. 143(4), pp. 1386-
1389, 1996.
[81] H. Iwahara, T. Yajima, T. Hibino, K. Ozaki, and H. Suzuki, “Protonic conduction in calcium, strontium and barium zirconates”, Solid State Ionics, Vol. 61, pp. 65-69, 1993.
[82] S. Gopalan and A.V. Virkar, “Thermodynamic stabilities of SrCeO3 and BaCeO3
using a molten salt method and galvanic cells”, Journal of The Electrochemical Society, Vol. 140, pp. 1060-1065, 1993.
[83] F.L. Chen, O.T. Sorensen, G.Y. Meng, and D.K. Peng, “Chemical stability study of BaCe0.9Nd0.1O3-δ high-temperature proton-conducting Ceramic”, Journal of Materials Chemistry, Vol. 7, pp. 481-485, 1997.
[84] J. Lu, L. Wang, L. Fan, Y. Li, L. Dai, and H. Guo, “Chemical stability of doped
BaCeO3-BaZrO3 solid solutions in different atmospheres”, Journal of Rare
Earths, Vol. 26(4), pp. 505-510, 2008.
[85] E. Fabbri, A. D’Epifanio, E.D. Bartolomeo, S. Licoccia, E. Traversa, “Tailoring
the chemical stability of Ba(Ce0.8-xZrx)Y0.2O3-δ protonic conductors for
Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs), Solid State Ionics, Vol. 179(15-16), pp. 558-564, 2008.
[86] L. Malavasi, C.A.J. Fisher, M. Saiful Islam, “Oxide-ion and proton conducting
electrolyte materials for clean energy applications: structural and mechanistic features”. Chemical Society Reviews, Vol. 39, pp. 4370-4387, 2010.
[87] M.Y. Wang, and L.G. Qi, “Mixed conduction in BaCe0.8Pr0.2O3-δ ceramic”,
Chinese Journal of Chemical Physics, Vol. 21(3), pp. 286-290, 2008.
[88] N.V. Sharova, and V.P. Gorelov, “Characteristics of proton-conducting
electrolytes BaCe1-xNdxO3-δ (0 ? x ? 0.16) in moist air, Russian Journal
of Electrochemistry, Vol. 41(9), pp. 1001-1007, 2005.
[89] E. Gorbova, V. Maragou, D. Medvedev, A. Demin, and P. Tsiakaras,
“Investigation of the protonic conduction in Sm-doped BaCeO3”, Journal
of Power Sources, Vol. 181(2), pp. 207-213, 2008.
[90] N. Maffei, L. Pelletier, J.P. Charland, and A. McFarlan, “An ammonia fuel cell
using a mixed ionic and electronic conducting electrolyte”, Journal of Power
Sources, Vol. 162, pp. 165-167, 2006.
[91] C. Chen, and G. Ma, “Proton conduction in BaCe1-xGdxO3-δ at intermediate
temperature and its application to synthesis of ammonia at atmospheric pressure”, Journal of Alloys Compound, Vol. 485(1-2), pp. 69-72, 2009.
[92] N.I. Matskevich, and T.A. Wolf, “The enthalpies of formation of BaCe1-xRexO3-δ (Re = Eu, Tb, Gd)”, Journal of Chemical Thermodynamics, Vol. 42(2), pp. 225-228, 2010.
[93] W.B. Wang, J.W. Liu, YD. Li, H.T. Wang, F. Zhang, and G.L. Ma,
“Microstructures and proton conduction behaviors of Dy-doped BaCeO3
ceramics at intermediate temperature”, Solid State Ionics, Vol. 181(15-16), pp.
667-671, 2010.
[94] M.Y. Wang, L.G. Qiu, and G.L. Ma, “Ionic conduction in Ba0.95Ce0.8Ho0.2O3-α”,
Chinese Journal of Chemistry, Vol. 25(9), pp. 1273-1277, 2007.
[95] J. Yin, X. Wang, J. Xu, H. Wang, F. Zhang, and G. Ma, “Ionic conduction in
BaCe0.85-xZrxEr0.15O3-α and its application to ammonia synthesis at atmospheric
pressure”, Solid State Ionics, Vol. 185(1), pp. 6-10, 2011.
[96] L.G. Qiu, and M.Y. Wang, “Ionic conduction and fuel cell performance of
Ba0.98Ce0.8Tm0.2O3 ceramic”, Chinese Journal of Chemical Physics, Vol. 23(6),
pp. 707-712, 2010.
[97] N.I. Matskevich, and T. Wolf, M.Yu. Matskevich, T.I. Chupakhina, “Preparation,
stability and thermodynamic properties of Nd- and Lu-doped BaCeO3 proton-
conducting ceramics”, European Journal of Inorganic Chemistry, Vol. 11, pp.
1477-1482, 2009.
[98] T. Norby, M. Wideroe, R. Glockner, Y. Larring, “Hydrogen in oxides”, Dalton
Transactions, Vol. 19, pp. 3012-3018, 2004.
[99] J.A. Kilner, “Fast oxygen transport in acceptor doped oxides”, Solid State Ionics,
Vol. 129(1-4), pp. 13-23, 2000.
[100] K. Yashiro, T. Suzuki, A. Kaimai, H. Matsumoto, Y. Nigara, and T. Kawada,
“Electrical properties and defect structure of niobiadoped ceria”, Solid State Ionics, Vol. 175(1-4), pp. 341-344, 2004.
[101] M. Amsif, D. Marrero-Lopez, J.C. Ruiz-Morales, S.N. Savvin, M. Gabas, and P. Nunez, “Influence of rare-earth doping on themicrostructure and conductivity of BaCe0.9Ln0.1O3-δ proton conductors”, Journal of Power Sources, Vol. 196(7), pp. 3461-3469, 2011.
[102] F. Zhao, and F. Chen, “Performance of solid oxide fuel cells based on proton-
conducting BaCe0.7In0.3-xYxO3-δ electrolyte”, International Journal of Hydrogen
Energy, Vol. 35(20), pp. 11194-11199, 2010.
[103] N.I. Matskevich, “Enthalpy of formation of BaCe0.9In0.1O3-δ”, Journal of Thermal Analysis and Calorimetry, Vol. 90(3), pp. 955-958, 2007.
[104] L. Bi, S.Q. Zhang, L. Zhang, Z.T. Tao, H.Q. Wang, and W. Liu, “Indium as an
ideal functional dopant for a proton-conducting solid oxide fuel cell, International Journal of Hydrogen Energy, Vol. 34(5), pp. 2421-2425, 2009.
[105] C. Zhang, and H. Zhao, Influence of In content on the electrical conduction
behavior of Sm- and In-co-doped proton conductor BaCe0.80-xSm0.20InxO3-δ”,
Solid State Ionics, Vol. 206(5), pp. 17-21, 2012.
[106] C. Zhang, and H. Zhao, “Electrical conduction behavior of Sr substituted proton conductor Ba1-xSrxCe0.9Nd0.1O3-δ”, Solid State Ionics, Vol. 181(33-34), pp. 1478-1485, 2010.
[107] H. Iwahara, “Technological challenges in the application of proton conducting
ceramics”, Solid State Ionics, Vol. 77, pp. 289-298, 1995.
[108] H. Matsumoto, K. Takeuchi, and H. Iwahara, “Electromotive force of H2–D2
gas cell using high-temperature proton conductors”, Solid State Ionics, Vol.
125, pp. 377-381, 1999.
[109] H. Iwahara, T. Esaka, and H. Uchida, T. Yamauchi, K. Ogaki, “High
temperature type protonic conductor based on SrCeO3 and its application to the extraction of hydrogen gas”, Solid State Ionics, Vol. 18(19), pp. 1003-1007, 1986.
[110] W.H. Yuan, Y.P. Gu, and L. Li, ‘Synthesis and ionic conduction of cation-
deficient apatite La9.332x/3MxSi6O26 doped with Mg, Ca, Sr”, Chinese Journal
of Chemical Engineering, Vol. 16(3) pp. 488-491, 2008.
[111] N. Ito, M. Iijima, K. Kimura, and S. Iguchi, “New intermediate temperature fuel cell with ultra-thin proton conductor electrolyte”, Journal of Power Sources, Vol. 152, pp. 200-203, 2005.
[112] H. Iwahara, ”Oxide-ionic and protonic conductors based on perovskite-type oxides and their possible applications“, Solid State Ionics, Vol. 52, pp. 99-104, 1992.
[113] X. Qi, and Y.S. Lin, “Electrical conduction and hydrogen permeation through mixed proton–electron conducting strontium cerate membranes”, Solid State Ionics Vol. 130, pp. 149-156, 2000.
[114] J. Li, H. Yoon, T.K. Oh, and E.D. Wachsman, “Stability of SrCe1-xZrxO3-δ under water gas shift reaction conditions”, Journal of The Electrochemical Society, Vol. 157(3), pp. B383-B387, 2010.
[115] Y. Guo, Y. Lin, R. Ran, and Z.P. Shao, “Zirconium doping effect on the performance of proton-conducting BaZryCe0.8?yY0.2O3?δ (0.0 ? y ? 0.8) for fuel cell applications”, Journal of Power Sources, Vol. 193, pp. 400-407, 2009.
[116] S. Uemiya, “Brief review of steam reforming using a metal membrane
Reactor”, Topics in Catalysis, Vol. 29, pp. 79-84, 2004.
[117] R.J. Phillips, N. Bonanos, F.W. Poulsen, and E.O. Ahlgen, “Structure and electrical characterization of SrCe1-xYxOξ”, Solid State Ionics, Vol. 125, pp. 389-395, 1999.
[118] X. Wei, and Y.S. Lin, “Protonic and electronic conductivities of terbium doped strontium cerates”, Solid State Ionics, Vol. 178, pp. 1804-1810, 2008.
[119] S.J. Song, E.D. Wachsman, J. Rhodes, S.E. Dorris, and U. Balachandran, “Hydrogen permeability of SrCe1?xMxO3?δ (x=0.05, M=Eu, Sm)”, Solid State Ionics, Vol. 167, pp. 99-105, 2004.
[120] S.K. Ryi, J.S. Park, S.H. Kim, S.H. Cho, J.S. Park, and D.W. Kim, “Development of a new porous metal support of metallic dense membrane for hydrogen separation”, Journal of Membrane Science, Vol. 279, pp. 439-445, 2006.
[121] S. Hamakawa, L. Li, A. Li, and E. Iglesia, “Synthesis and hydrogen permeation properties of membranes based on dense SrCe0.95Yb0.05O3?α thin films”, Solid State Ionics, Vol. 148, pp. 71-78, 2002.
[122] H. Yoon, S.J. Song, T.K. Oh, J.L. Li, K.L. Duncan, and E.D. Wachsman, “Fabrication of thin-film SrCe0.9Eu0.1O3?δ hydrogen separation membranes on Ni–SrCeO3 porous tubular supports”, Journal of the American Ceramic Society, Vol. 92(8), pp. 1849-1852, 2009.
[123] H. Yoon, T.K. Oh, J.L. Li, K.L. Duncan, and E.D. Wachsman, “Permeation Through SrCe0.9Eu0.1O3-δ?/?Ni-SrCeO3 tubular hydrogen separation membranes”, Journal of The Electrochemical Society, Vol. 156(7), pp. B791-B794, 2009.
[124] H. Iwahara, H. Uchida, K. Ono, and K. Ogaki, “Proton conduction in sintered oxides based on BaCeO3”, Journal of The Electrochemical Society, Vol. 135, pp. 529-533, 1988.
[125] H. Iwahara, “Technological challenges in the application of proton conducting ceramics”, Solid State Ionics, Vol. 77, pp. 289-298, 1995.
[126] R.B. Cervera, Y. Oyama, and S. Yamaguchi, “Low temperature synthesis of nanocrystalline proton conducting BaZr0.8Y0.2O3-δ by sol-gel method”, Solid State Ionics, Vol. 178, pp. 569-574, 2007.
[127] F.M.M. Snijkers, A. Buekenhoudt, J. Cooymans, and J.J. Luyten, “Proton conductivity in perovskite type yttrium doped barium hafnate”, Scripta Materialia, Vol. 50, pp. 655-659, 2004.
[128] M. Amsif, D. Marrero-Lopez, A. Magraso, J. Pena-Martinez, J.C. Ruiz-Morales, and P. Nunez, Synthesis and characterization of BaCeO3-based proton conductors obtained from freeze-dried precursors, Journal of the European Ceramic Society, Vol. 29(1), pp. 131-138, 2009.
[129] Z. Khani, M. Taillades–Jacquin, G. Taillades, M. Marrony, D.J. Jones, and J. Roziere, “New synthesis of nanopowders of protonconducting materials. A route to densified proton ceramics”. Journal of Solid State Chemistry, Vol. 182(4), pp. 790-798, 2009.
[130] U. Anselmi-Tamburini, M.T. Buscaglia, M. Viviani, M. Bassoli, C. Bottino, V. Buscaglia, “Solid-state synthesis and spark plasma sintering of submicron BaYxZr1-xO3-x/2 (x = 0, 0.08 and 0.16) ceramics”, Journal of the European Ceramic Society, Vol. 26(12), pp. 2313-2318, 2006.
[131] P.A. Stuart, T. Unno, R. Ayres–Rocha, E. Djurado, and S.J. Skinner, “The synthesis and sintering behaviour of BaZr0.9Y0.1O3-δ powders prepared by spray pyrolysis”, Journal of the European Ceramic Society, pp. 29(4), pp. 697-702, 2009.
[132] K. Gdula-Kasica, A. Mielewczyk-Gryn, S. Molin, P. Jasinski, A. Krupa, and B. Kusz, ,”Optimization of microstructure and properties of acceptor-doped barium cerate”, Solid State Ionics, Vol. 225, pp. 245-249, 2012.
[133] A. Magraso, C. Frontera, A.E. Gunnas, A. Tarancon, D. Marrero-Lopez, T. Norby, and R. Haugsrud, “ Structure, chemical stability and mixed proton-electron conductivity in BaZr0.9?xPrxGd0.1O3?δ”, Journal of Power Sources, Vol. 196, pp. 9141-9417, 2011.
[134] X. L. Zhou, L. M. Liu, J. M. Zhen, S. C. Zhu, B. W. Li, K. N Sun and P. Wang, “Ionic conductivity, sintering and thermal expansion behaviors of mixed ion conductor BaZr0.1Ce0.7Y0.1Yb0.1O3?δ prepared by ethylene diamine tetraacetic acid assisted glycine nitrate process”, Journal of Power Sources, Vol. 196, pp. 5000-5006, 2011.
[135] K.R. Lee, C.J. Tseng, J.K. Chang, I.M. Hung, J.C. Lin and S.W. Lee, “Strontium doping effect on phase homogeneity and conductivity of Ba1-xSrxCe0.6Zr0.2Y0.2O3?δ proton-conducting oxides”, International Journal of Hydrogen Energy, Vol. 38, pp. 11097-11103, 2013.
[136] E. Gorbova, V. Maragou, D. Medvedev, A. Demin and P. Tsiakaras, “Influence of Cu on the properties of gadolinium-doped barium cerate”, Journal of Power Sources, Vol. 181, pp. 292-296, 2008.
[137] F. Zhao, Q. Liu, S.W. Wang, K. Brinkman, F.L. Chen, “Synthesis and characterization of BaIn0.3-xYxCe0.7O3-δ (x = 0, 0.1, 0.2, 0.3) proton conductors”, International Journal of Hydrogen Energy, Vol. 35, pp. 4258-4263, 2010.
[138] P. Sawant, S. Varmaa, M.R. Gonal, B.N. Wani, D. Prakashc, and S.R. Bharadwaj, “Effect of Ni Concentration on Phase Stability, Microstructure and Electrical Properties of BaCe0.8Y0.2O3-δ-Ni Cermet SOFC anode and its application in proton conducting ITSOFC”, Electrochimica Acta, Vol. 120, pp. 80-85, 2014.
[139] W. Sun, L. Yan, Z. Shi, Z. Zhu, and W. Liu, “Fabrication and performance of a proton-conducting solid oxide fuel cell based on a thin BaZr0.8Y0.2O3?δ electrolyte membrane”, Journal of Power Sources, Vol. 195, pp. 4727-4730, 2010.
[140] L. Bi, E. Fabbri, Z. Sun, E. Traversa, “A novel ionic diffusion strategy to fabricate high-performance anode-supported solid oxide fuel cells (SOFCs) with proton-conducting Y-doped BaZrO3 films”, Energy & Environmental Science, Vol. 4, pp. 409-412, 2011.
[141] Standard Test Method for Water Absorption, “Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired White ware Products”, ASTM C373-88, Reapproved 2006.
[142] H. Shi, G. Yang, Z. Liu, G. Zhang, R. Ran, Z. Shao, W. Zhou, and W. Jin, “High performance tubular solid oxide fuel cells with BSCF cathode”, International Journal of Hydrogen Energy, Vol. 37, pp. 13022-13029, 2012.
[143] J.L. Li, H. Yoon, T.K. Oh, and E.D. Wachsman, “Stability of SrCe1?xZrxO3-δ under Water Gas Shift Reaction Conditions”, Journal of The Electrochemical Society, Vol. 157(3), pp. B383-B387, 2010.
[144] Y. Guo, Y. Lin, R. Ran, Z.P. Shao, “Zirconium doping effect on the performance of BaZryCe0.8?yY0.2O3-δ(0.0?y?0.8) proton-conducting for fuel cell applications”, Journal of Power Sources, Vol. 193, pp. 400-407, 2009.
[145] S.W. Lee, C.J. Tseng, J.K. Chang, K.R. Lee, C.T. Chen, I.M. Hung, S.L. Lee, J.C. Lin, “Synthesis and characterization of Ba0.6Sr0.4Ce0.8-xZrxY0.2O3-δ proton-conducting oxides for use as fuel cell electrolyte”, Journal of Alloys and Compounds, Vol. 586, pp. S506-510, 2014.
[146] S.J. Zhana, X.F. Zhu, B.F. Ji, W.P. Wang, X.L. Zhanga, J.B. Wang, W.S. Yang, and L.W. Lin, “Preparation and hydrogen permeation of SrCe0.95Y0.05O3-δ asymmetrical membranes”, Journal of Membrane Science, Vol. 340, pp. 241-248, 2009.
[147] F. Giannici, A. Longo, A. Balerna, K.D. Kreuer, and A. Martorana, “Indium Doping in Barium Cerate:? the Relation between Local Symmetry and the Formation and Mobility of Protonic Defects”, Chemistry of Materials, Vol. 19(23), pp. 5714-5720, 2007.
[148] I.M. Hung, H. W. Peng, S. L. Zheng, C. P. Lin, and J. S. Wu, “Phase stability and conductivity of Ba1?ySryCe1?xYxO3?δ solid oxide fuel cell electrolyte”, Journal of Power Sources, Vol. 193, pp. 155-159, 2009.
[149] S.V. Bhide, and A.V. Virkar, “Stability of ?AB?1?/?2′??B〃?1?/?2?O3???Type Mixed Perovskite Proton Conductors”, Journal of The Electrochemical Society, Vol. 146, pp. 4386-4392,1999.
[150] X. Chi, J. Zhang, Z. Wen, Y. Liu, M. Wu, and X. Wu,” Influence of In doping on the structure, stability and electrical conduction behavior of Ba(Ce,Ti)O3 solid solution”, Journal of Alloys and Compounds, Vol. 554, pp. 378-384,2013.
[151] N. I. Matskevich, “Enthalpy of formation of BaCe0.9In0.1O3?δ(s)”, Journal of Thermal Analysis and Calorimetry, Vol. 90, pp. 955-958, 2007.
[152] D. Pergolesi, E. Fabbri, and E. Travers, “Chemically stable anode-supported solid oxide fuel cells based on Y-doped barium zirconate thin films having improved performance”, Electrochemistry Communications, Vol. 12, pp. 977-980, 2010.
[153] T. Suzuki, Z. Hasan, Y. Funahashi, T. Yamaguchi, Y. Fujishiro, and M. Awano, “Impact of anode microstructure on solid oxide fuel cells”, Science, Vol. 325, pp. 852-855, 2009.
[154] K.T. Hsu, Y.J. Ren, H.W. Chen, P.H. Tsai, Jason S.C. Jang, C.S. His, J.C. Lin, J.K. Chang, S.W. Lee, and I.M. Hung, “Evolution of the sintering ability, microstructure, and cell performance of Ba0.8Sr0.2Ce0.8?x?yZryInxY0.2O3?δ (x = 0.05, 0.1 y = 0, 0.1) proton-conducting electrolytes for solid oxide fuel cell”, Journal of the Ceramic Society of Japan, Vol. 123(4), pp. 193-198, 2015.
[155] S.P. Jiang, and S.H. Chan, “A review of anode materials development in solid oxide fuel cells”, Journal of Materials Science, Vol. 39, pp. 4405-4439, 2004.
[156] G. Taillades, P. Pers, V. Mao, and M. Taillades, “High performance anode-supported proton ceramic fuel cell elaborated by wet powder spraying”, International Journal of Hydrogen Energy, Vol. 41, pp. 12330-123236, 2016.
[157] I.M. Hung, Y.J. Chiang, S.W. Lee, J.K. Chang, J.C. Lin, Jason S.C. Jang, Chuan Li and C.S. His, “Material characterization and electrochemical performance of Sr(Ce0.6Zr0.4)0.8Y0.2O3?δ proton conducting ceramics prepared by EDTA-citrate complexing and solid-state reaction methods”, Journal of the Ceramic Society of Japan, Vol. 123(4), pp. 187-192, 2015.
[158] L. Fan, and P.C. Su, “Layer-structured LiNi0.8Co0.2O2: A new triple (H+/O2?/e?) conducting cathode for low temperature proton conducting solid oxide fuel cells”, Journal of Power Sources, Vol. 306, pp. 369-377, 2016.
[159] G. Chiodelli, L. Malavasi, C. Tealdi, S. Barison, M. Battagliarin, L. Doubova, M. Fabrizio, C. Mortalo, and R. Gerbasi, “Role of synthetic route on the transport properties of BaCe1-xYxO3 proton conductor”, Journal of Alloys and Compounds, Vol. 470, pp. 477-485, 2009.
[160] H. Iwai, N. Shikazono, T. Matsui, H. Teshima, M. Kishimoto, R. Kishida, D. Hayashi, K. Matsuzaki, D. Kanno, M. Saito, H. Muroyama, K. Eguchi, N. Kasagi, and H. Yoshida, “Quantification of SOFC anode microstructure based on dual beam FIB-SEM technique”, Journal of Power Sources, Vol. 195, pp. 955-961, 2010.
[161] P.R. Shearing, J. Golbert, R.J. Chater, and N.P. Brandon, “3D reconstruction of SOFC anodes using a focused ion beam lift-out technique”, Chemical Engineering Science, Vol. 64, pp. 3928-3933, 2009.
[162] W. Zhu, D. Ding, and C. Xia, “Enhancement in three-phase boundary of SOFC electrodes by an ion impregnation method: a modeling comparison”, Electrochemical and Solid-State Letters, Vol. 11, pp. B83-B86, 2008.
[163] J.R. Wilson, and S.A. Barnett, Solid oxide fuel cell Ni–YSZ Anodes: effect of composition on microstructure and performance, Electrochemical and Solid-State Letters, Vol. 11, B181-B185, 2008.
[164] K.L. Duncan, K.T. Lee, and E.D. Wachsman, “Dependence of open-circuit potential and power density on electrolyte thickness in solid oxide fuel cells with mixed conducting electrolytes”, Journal of Power Sources, Vol. 196, pp. 2445-2451, 2011.
[165] E. Wanzenberg, F. Tietz, D. Kek, P. Panjan, and D. Stover, “Influence of electrode contacts on conductivity measurements of thin YSZ electrolyte films and the impact on solid oxide fuel cells”, Solid State Ionics, Vol. 164, pp. 121-129, 2003.
[166] O.H. Kwon, and G.M. Choi, “Electrical conductivity of thick film YSZ”, Solid State Ionics, Vol. 177, pp. 3057-3062, 2006.
[167] K. Xie, R. Yan, and X. Liu, “A novel anode supported BaCe0.4Zr0.3Sn0.1Y0.2O3-δ electrolyte membrane for proton conducting solid oxide fuel cells”, Electrochemistry Communications, Vol. 11, pp. 1618-1622, 2009.
[168] Y. Lin, R. Ran, Y. Guo, W. Zhou, R. Cai, J. Wang, and Z. Shao, “Proton-conducting fuel cells operating on hydrogen, ammonia and hydrazine at intermediate temperatures”, International Journal of Hydrogen Energy, Vol. 35, pp. 2637-2642, 2010.
[169] F. Zhao, C. Jin, C. Yang, S. Wang, and F. Chen, “Fabrication and characterization of anode-supported micro-tubular solid oxide fuel cell based on BaZr0.1Ce0.7Y0.1Yb0.1O3-δ electrolyte”, Journal of Power Sources, Vol. 196, pp. 688-691, 2011.
[170] N. Yan, X.Z. Fu, K.T. Chuang, and J.L. Luo, “Insights into CO poisoning in high performance proton-conducting solid oxide fuel cells”, Journal of Power Sources, Vol. 254, 48-54, 2014.
[171] H.C. Patel, A.N. Tabish, F. Comelli, and P.V. Aravind, “Oxidation of H2, CO and syngas mixtures on ceria and nickel pattern anodes”, Applied Energy, Vol. 154, pp. 912-920, 2015.
[172] A. Fabas, D. Monceau, C. Josse, P. Lamesle, and A.R.V. Put, “Mechanism of metal dusting corrosion by pitting of a chromia-forming alloy at atmospheric pressure and low gas velocity”, Oxidation of Metals, Vol. 39, pp. 437-456, 1993.
[173] J.G. Li, C.Y. Tsai, and S.W. Kuo, “Fabrication and characterization of inorganic silver and palladium nanostructures within hexagonal cylindrical channels of mesoporous carbon”, Polymers, Vol. 6, pp. 1794-1809, 2014.
[174] A.V. Shchukarev, and D.V. Korolkov, “XPS study of group IA carbonates”, Central European Journal of Chemistry, Vol. 2, pp. 347-362, 2004.
[175] J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben, “Handbook of X-ray photoelectron spectroscopy”, United State of American, 1995.
指導教授 鄭憲清(Shian-Ching Jang) 審核日期 2018-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明