博碩士論文 106222025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:105 、訪客IP:18.119.134.171
姓名 謝妮恩(Ni-En Sie)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(A Complete Quantification of Photon-induced Desorption Processes of CO2 Ice)
相關論文
★ X射線與電子能量作用下星際冰晶的化學衍化★ VUV and EUV irradiation of CH4+NH3 ice mixtures
★ Wavelength-dependent photodesorption of VUV-inactive molecular ices (N2 Ar, Kr) induced by VUV-excited CO ice★ Temperature dependent photodesorption of CO ices
★ Force between Contacting PDMS Surfaces upon Steady Sliding: Speed Dependence and Fluctuations★ Diffusion in Realistic-Like Double-Layered Ices
★ 能量源照射星際冰晶之光脫附作用與光化學反應★ Chemical evolution of CO:H2S ice mixture under 1 keV electron irradiation
★ 不同電子能量作用下對N2O冰晶的衍化影響★ 一氧化二氮冰晶在真空紫外光照射下其生成溫度對耗散截面的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在冷星雲及星際物質之間,大量的二氧化碳被觀測到以氣態的形式出現,原因來自於宇宙射線和真空紫外光的照射,而二氧化碳的光脫附包含了化學反應的資訊,在恆星與星際冰晶形成的區域擔任重要的角色。根據文獻,不同溫度下形成的二氧化碳冰晶將導致結構不同,在35 K以下的結構是無序的,而在35 K之上形成的二氧化碳冰晶是有序的晶格排列。以往文獻指出,二氧化碳的光脫附產量與結構有關,為了深入探討二氧化碳結構與光脫附的關係,將二氧化碳分別在16、30、40、50和 60 K的溫度下生長,接著降回16 K照射真空紫外光,搭配紅外光譜儀和質譜儀量測不同結構下二氧化碳冰晶的光脫附產量。
由於以往質譜儀的脫附值僅代表相對的值,本篇論文中提出了一個新穎的方式校正質譜儀,能夠將量測到的電流訊號轉換成多少分子脫附出來。實驗結果說明最主要的光脫附產物為一氧化碳、氧氣及二氧化碳,在不同溫度生長的二氧化碳冰晶中,這三種分子的光脫附產量幾乎相同,這也代表著二氧化碳結構對於光脫附產量是沒有影響的,而此結果和以往的文獻是相反的。
摘要(英) In cold dense cloud and interstellar medium (ISM), CO2 is observed to be one of the most abundant gas molecule due to irradiation of cosmic ray or ultraviolet (UV) photons, and the photodesorption of CO2 ice contains the information of chemical reactions in the star and interstellar forming regions. According to literatures, different deposition temperatures of CO2 ice lead to distinct structures of CO2, which possesses an amorphous structure below 35 K and a crystalline structure at temperatures higher than 35 K, and the photodesorption yield of CO2 ice depends on its morphology. For the purpose of investigating the relationship between the photodesorption yield of CO2 ice and its morphology, CO2 ice is deposited at 16, 30, 40, 50, and 60 K respectively, irradiated by vacuum ultraviolet (VUV) photons at 16 K, with detection systems of a Fourier transform infrared spectroscopy (FTIR) and a quadrupole mass spectrometry (QMS).
In this work, we introduce a novel method to transfer the relative value into authentic photodesorption yield by quantitative calibration of QMS. The experimental results show that the dominant photodesorbed species is CO molecules, along with CO2 and O2, and the photodesorption yields of CO2 ices deposited at different temperature configurations are almost the same, meaning that the morphology effect has nothing to do on photodesorption yield of CO2 ice, which is inconsistent with previous works.
關鍵字(中) ★ 二氧化碳
★ 星際物質
★ 光脫附
★ 真空紫外光照射
★ 紅外光譜儀
★ 四極質譜儀
關鍵字(英) ★ Carbon dioxide
★ interstellar medium
★ photodesorption
★ VUV irradiation
★ FTIR
★ QMS
論文目次 摘要 I
Abstract II
Acknowledgment III
List of figures VI
List of tables VIII
Chapter I .Introduction 1
Chapter II .Experimental Methods 4
2.1 Setup 4
2.2 Experimental procedure 5
2.2.1 CO2 ice in different deposited temperature configurations under VUV irradiation at 16 K 5
2.2.2 CO2/CO layered ice 7
Chapter III .Results and Discussion 8
3.1 VUV irradiation of CO2 ice 8
3.1.1 Infrared spectroscopy 8
3.1.2 Mass spectrometry 10
3.1.3 The mechanisms of photodesorption 13
3.2 The discrepancy of photodesorption yield in Infrared Spectroscopy and Mass Spectrometry 15
3.2.1 Missing carbon 15
3.2.2 Variation of absorption strength 17
3.3 Quantitative calibration of QMS 20
3.3.1 Calibration of proportionality constant, kQMS 21
3.3.2 Measurement of Sensitivity S(m/z) of QMS 23
3.4 Photodesorption yield 26
3.5 Morphology effect on photodesorption 29
3.6 Photodesorption yield compared with other’s work 30
Chapter IV .Conclusions 33
Chapter V .Reference 34
參考文獻 [1] van Broekhuizen, F.A., et al., Infrared spectroscopy of solid CO–CO2 mixtures and layers. Astronomy & Astrophysics, 2006, 451, 723-731.
[2] Shen, C.J., et al., Cosmic ray induced explosive chemical desorption in dense clouds. Astronomy & Astrophysics, 2004, 415, 203-215.
[3] Oberg, K.I., et al., Photodesorption of CO ice. The Astrophysical Journal Letters, 2007, 662, L23.
[4] Munoz Caro, G.M., et al., New results on thermal and photodesorption of CO ice using the novel InterStellar Astrochemistry Chamber (ISAC). Astronomy & Astrophysics, 2010, 522, A108.
[5] Fayolle, E.C., et al., CO ice photodesorption: a wavelength-dependent study. The Astrophysical Journal Letters, 2011, 739, L36.
[6] Fillion, J.H., et al., Wavelength resolved UV photodesorption and photochemistry of CO2 ice. Faraday Discussions, 2014, 168, 533.
[7] Cruz-Diaz, G., et al., Vacuum-UV spectroscopy of interstellar ice analogs-I. Absorption cross-sections of polar-ice molecules. Astronomy & Astrophysics, 2014, 562, A119.
[8] Chen, Y.-J., et al., Vacuum Ultraviolet Emission Spectrum Measurement of a Microwave-discharge Hydrogen-flow Lamp in Several Configurations: Application to Photodesorption of CO Ice. The Astrophysical Journal, 2014, 781.
[9] Yuan, C. and J.T. Yates Jr, Radiation Damage and Associated Phase Change Effect on Photodesorption Rates from Ices-Lyα Studies of the Surface Behavior of CO2 (Ice). The Astrophysical Journal, 2014, 780.
[10] Bahr, D.A. and R.A. Baragiola, Photodesorption of Solid CO2 by Lyα. The Astrophysical Journal, 2012, 761, 36.
[11] Oberg, K., E. van Dishoeck, and H. Linnartz, Photodesorption of ices I: CO, N2, and CO2. Astronomy and Astrophysics, 2009, 496, 281-293.
[12] Munoz Caro, G.M., et al., Photodesorption and physical properties of CO ice as a function of temperature. Astronomy & Astrophysics, 2016, 589, A19.
[13] 吳尚叡, CO2冰晶光脫附之溫度效應研究, in 物理學系. 2014, 國立中央大學: 桃園縣. 74.
[14] Martin-Domenech, R., et al., UV photoprocessing of CO2 ice: a complete quantification of photochemistry and photon-induced desorption processes. Astronomy & Astrophysics, 2015, 584, A14.
[15] Bossa, J.-B., et al., Porosity and Band-Strength Measurements of Multi-Phase Composite Ices. The Astrophysical Journal, 2015, 814, 47.
[16] Falk, M., Amorphous solid carbon dioxide. The Journal of chemical physics, 1987, 86, 560-564.
[17] Escribano, R.M., et al., Crystallization of CO2 ice and the absence of amorphous CO2 ice in space. Proc Natl Acad Sci U S A, 2013, 110, 12899-904.
[18] Pontoppidan, K.M., et al., The c2d spitzer spectroscopic survey of ices around low-mass young stellar objects. II. CO2. The Astrophysical Journal, 2008, 678, 1005.
[19] Kim, H.J., et al., CO2 Ice Toward Low-luminosity Embedded Protostars: Evidence for Episodic Mass Accretion via Chemical History. The Astrophysical Journal, 2012, 758, 38.
[20] Gerakines, P., et al., The infrared band strengths of H2O, CO and CO2 in laboratory simulations of astrophysical ice mixtures. 1995.
[21] Ovchinnikov, M.A. and C.A. Wight, Inhomogeneous broadening of infrared and Raman spectral bands of amorphous and polycrystalline thin films. The Journal of chemical physics, 1993, 99, 3374-3379.
[22] Yamada, H. and W.B. Person, Absolute infrared intensities of the fundamental absorption bands in solid CO2 and N2O. The Journal of Chemical Physics, 1964, 41, 2478-2487.
[23] Bertin, M., et al., UV photodesorption of interstellar CO ice analogues: from subsurface excitation to surface desorption. Phys Chem Chem Phys, 2012, 14, 9929-35.
[24] DS-NES, N., Bond Dissociation Energies in Simple Molecules. 1970.
[25] Okabe, H., Photochemistry of small molecules. Vol. 431. 1978: Wiley New York.
[26] Gerakines, P., W. Schutte, and P. Ehrenfreund, Ultraviolet processing of interstellar ice analogs. I. Pure ices. Astronomy and Astrophysics, 1996, 312, 289-305.
[27] Loeffler, M., et al., CO2 synthesis in solid CO by Lyman-alpha photons and 200 keV protons. Astronomy and Astrophysics, 2005, 435, 587-594.
[28] Cruz-Diaz, G., et al., Vacuum-UV spectroscopy of interstellar ice analogs-II. Absorption cross-sections of nonpolar ice molecules. Astronomy & Astrophysics, 2014, 562, A120.
[29] Schulze, W. and H. Abe, Density, refractive index and sorption capacity of solid CO2 layers. Chemical Physics, 1980, 52, 381-388.
[30] Satorre, M., et al., Density of CH4, N2 and CO2 ices at different temperatures of deposition. Planetary and Space Science, 2008, 56, 1748-1752.
指導教授 陳俞融 審核日期 2018-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明