參考文獻 |
[1] Andersen, P. K. and Gill, R. D. (1982). Cox’s regression model for counting processes:
A large sample study. Annals of Statistics 10, 1100-1120.
[2] Cai, J. and Prentice, R. L. (1995). Estimating equations for hazard ratio parameters
based on correlated failure time data. Biometrika 82, 151–164.
[3] Chen, A. P. (2007). Ordered Bivariate Survival Time with Time Dependent Covariate
-Comparison of Marginal Method. NCU Thesis.
[4] Clayton, D. G. (1978). A model for association in bivariate life tables and its applica-
tion in epidemiological studies of chronic disease incidence. Biometrika 65, 141–151.
[5] Clayton, D. G. and Cuzick, J. (1985). Multivariate generalisations of the proportional
hazards model. Journal of the Royal Statistical Society, Series A, 148, 82–117.
[6] Cook, R. J. and Lawless, J. F. (2002). Analysis of repeated events. Statistical Methods
in Medical Research 11, 141-166.
[7] Cox, D. R. (1972). Regression models and life-tables (with Discussion). Journal of
the Royal Statistical Society:Series B, 34, 187-220.
[8] Crowder, M. (1989). A multivariate distribution with Weibull connections. J. R.
Statist. Soc. B, 51, 93-107.
[9] Fleming, T. R. and Harrington, D. P. (1991). Counting Processes and Survival Anal-
ysis. John Wiley and Sons, New York.
[10] Guo, G. and Rodr′ ıguez, G. (1992). Estimating a multivariate proportional hazards
model for clustered data using the EM algorithm. With an application to child sur-
vival in Guatemala. J. Am. Statist. Assoc. 87, 969-976.
[11] Hougaard, P. (1986). A class of multivariate failure time distributions. Biometrika
73, 671–678.
[12] Huber, P. J. (1967). The behaviour of maximum likelihood estimates under non-
standard conditions. Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability 1, 221–233.
[13] Klein, J. P. (1992). Semiparametirc estimation of random effects using the Cox model
based on the EM algorithm. Biometrika 48, 795-806.
[14] Lawless, J. F. and Nadeau, C. (1995). Some simple robust methods for the analysis
of recurrent events. Technometrics 37, 158-168.
[15] Lin, D. Y. and Wei, L. J. (1989). The robust inference for the Cox proportional
hazard model. Journal of the American Statistical Association 84, 1074-1078.
[16] Lin, D. Y. (1994). Cox regression analysis of multivariate failure time data: the
marginal approach. Statistics in Medicine 13, 2233-2247.
[17] Lin, D. Y., Wei, L. J., Yang, I. and Ying, Z. (2000). Semiparametric regression for the
mean and rate functions of recurrent events. Journal of the Royal Statistical Society,
Series B, 62, 711–730.
[18] MaGilchrist, C. A. and Aisbtt, C. W. (1991). Regression with frailty in survival
analysis. Biometrics 47, 461–466.
[19] Nielsen, G. G., Gill, R. D., Andersen, R. K. and Sørensen, T. I. A. (1992). A count-
ing process approach to maximum likelihood estimation in frailty models. Scand. J.
Statist. 19, 25-43.
[20] Oakes, D. (1982). A model for association in bivariate survival data. Journal of the
Royal Statistical Society, Series B, 44, 414–422.
[21] Oakes, D. (1992). Frailty models for multiple event times. Lifetime Data Anal. 4,
209–228.
[22] Pepe, M. S. and Cai, J. (1993). Some graphical displays and marginal regression anal-
yses for recurrent failure times and time-dependent covariates. Journal of American
Statistical Association 88, 811–820.
[23] Prentice, P. L., Williams, B. J. and Peterson, A. V. (1981). On the regression analysis
of multivariate failure time data. Biometrika 68, 373-379.
[24] Therneau, T. M. and Grambsch, P. M. (eds) (2000). Modeling survival data:extending
the Cox Model. Springer, New York.
[25] Vaupel, J. W., Manton, K. G. and Stallard, E. (1979). The impact of heterogeneity
in individual frailty on the dynamics of mortality. Demography, 16:439–454.
[26] Wei, L. J., Lin, D. Y., and Weissfeld, L. (1989). Regression analysis of multivariate
incomplete failure time data by modeling marginal distributions. Journal of American
Statistical Association 84, 1065-1073.
[27] Wulfsohn, M. S., Lin, D. Y., and Tsiatis, A. A. (1997). A Joint Model for Survival
and Longitudinal Data Measured with Error. Biometrics 53, 330-339. |