博碩士論文 105328020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:18.116.65.125
姓名 敖昱弘(Yu-Hung Ao)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 應用雷射材料製程技術於製備Pt3Co奈米結構陰極觸媒層以提升質子交換膜燃料電池性能
(Production of Pt3Co nanoporous cathode catalyst by laser based material application methods for high performance PEMFC)
相關論文
★ 定開孔率下流道設計與疏水流場對質子交換膜燃料電池之性能影響★ 熱風循環烘箱熱傳特性研究
★ 以陽極處理製備奈米結構之氧化鐵光觸媒薄膜應用在光電化學產氫★ 規則多孔碳應用在燃料電池陰極觸媒擔體之研究
★ 鉑錫/多孔碳觸媒應用於燃料電池陰極反應之研究★ 腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究
★ 碎形理論應用在質子交換膜燃料電池中氣體擴散層熱傳導係數之研究★ 中溫固態氧化物燃料電池複合系統分析
★ 中文質子傳輸型固態氧化物燃料電池陽極之研究★ 鋯摻雜鋇鈰釔氧化物微結構與電化學特性之研究
★ 發展應用脈衝雷射沉積製備奈米顆粒堆疊多孔觸媒層與滴塗聚苯並咪唑介面層製作高溫型質子交換膜燃料電池★ 直接甲醇燃料電池氣體擴散層之研究
★ 不同流道設計之透明質子交換膜燃料電池陰極水生成現象探討★ 鋰離子電池陰極材料LiCoO2粉體尺寸與形貌對電池性能的影響
★ 多孔性碳材應用於質子交換膜燃料電池觸媒層之研究★ 多孔材應用於質子交換膜燃料電池散熱之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來人類對能源需求日益攀升,在使用化石燃料同時亦產生汙染物而破壞環境。為求潔淨能源以永續環境,燃料電池的發展刻不容緩。燃料電池使用貴重金屬鉑(Platimun, Pt)做為觸媒層,然而傳統塗佈製程因具有孤島效應導致Pt於觸媒層使用量高,因成本較高使燃料電池未能普及。本研究藉由脈衝雷射沉積法(Pulsed Laser Deposition, PLD) 製備 Pt3Co合金奈米顆粒觸媒層應用於燃料電池觸媒層。相較傳統製程於陰極端Pt使用量需400 μg/cm2,PLD能製作更均勻分散的奈米顆粒觸媒層,僅使用Pt3Co 100 μg/cm2,Pt含量90.8 μg/cm2,應用於陰極端並結合化學去合金(Dealloy)製程及連續雷射處理(Continous Wave Laser Processing, CWLP)以有效提升Pt使用率及耐久性。本研究經2小時最佳化Dealloy製程,增加奈米顆粒觸媒層的Pt有效裸露表面積以提升電池性能,電池性能於0.6 V下電流密度約為998.65 mA/cm2。
而後使用CWLP進行雷射處理將奈米顆粒觸媒間進行燒結,且於單一奈米顆粒觸媒製造出具有Pt殼層的Pt3Co合金觸媒以提升觸媒耐久性。藉由CWLP進行雷射退火使觸媒產生致密Pt殼層提升觸媒耐久性。在CWLP 0.3 W下,於0.6 V電流密度為1164 mA/cm2,與PLD製備之Pt樣品及400 μg/cm2之商用觸媒電池性能幾乎一致,於陰極端的MSPD上升至6.96 kW/g。且在經過5000圈加速老化循環測試後仍保有56%的化學活性表面積,此結果顯示CWLP使奈米顆粒觸媒之間燒結並使單一顆粒產生緻密Pt殼層而能有效提升觸媒耐久性,具良好的化學穩定性。
結合PLD、Dealloy及CWLP製程製備之Pt3Co奈米顆粒觸媒層,可有效降低燃料電池中Pt擔載量並保有優良的觸媒活性,提高觸媒使用率。進而提升燃料電池性及耐久性並降低燃料電池成本,使燃料電池更加普及進而永續環境。
摘要(英) In recent years, human demand for energy has risen steadily, and the use of fossil fuels has also produced pollutants and destroyed the environment. In order to get clean energy to protect environment. Developing fuel cell is of great urgency. In this study, the catalyst layers for polymer-electrolyte-membrane (PEM) fuel cells are fabricated by deposition of Pt3Co directly onto the gas diffusion layer (GDL) using pulsed laser deposition (PLD) to decrease the amount of Pt loading in PEMFC. Comparing with traditional production, using PLD can get more uniform catalyst layer to improve Mass Specific Power Density (MSPD).
The Current density at 0.6 V is 998.65 mA/cm2 in cathode side, using Pt3Co 100 μg/cm2 (Pt: 90.8 μg/cm2) with 2 hrs of dealloying process, the properties of electrochemistry and I-V performance are measured. We produce Pt-Shell/Pt3Co core Structure to promote Pt reactive surface area.The maximum current density at 0.6 V is 998 mA/cm2 were obtained for the sample with 2 hr dealloying time. This technique reduces the number of steps required to synthesize the catalyst layers and the amount of required Pt loading.
After dealloying, we use Continuous Wave Laser Processing (CWLP) to get compact Pt-shell to improve durability of Pt3Co catalyst. In 0.3 W CWLP, the current density at 0.6 V is 1164 mA/cm2. Besides, we also do Accelerate Degradation Test(ADT) to test durability. After 5000 cycles ADT, the Pt3Co catalyst still retain 56% MSECSA. The result reveals the CWLP production can improve the durability of catalyst and MSPD in cathode side up to 6.96 kW/g.
Using PLD and CWLP production can get compact Pt-Shell with Pt3Co-Core to improve PEMFC MSPD and durability.
關鍵字(中) ★ 脈衝雷射沉積法
★ 質子交換膜燃料電池
★ 陰極
★ 合金觸媒
關鍵字(英) ★ Pulsed laser deposition
★ PEM fuel cell
★ Cathode
★ Alloy catalysts
論文目次 摘要 I
Abstract III
目錄 III
圖目錄 IV
表目錄 VII
第一章 緒論 1
1-1 前言 1
1-2 PEMFC發展 2
1-2-1 PEMFC基本構造與原理 2
1-2-2 MEA構造 5
1-3 觸媒層製程發展現況 6
1-3-1 觸媒層製程方式 6
1-3-2各製程方法之現況 16
1-3-3 PEMFC主要發展瓶頸 18
1-4 PEMFC合金觸媒研究發展 20
1-4-1 Pt觸媒表面形貌及顆粒大小研究探討 20
1-4-2 PtxMy觸媒研究探討 21
1-4-3 Core-Shell結構研究探討 24
1-5本團隊已完成之工作 25
1-6研究目的 26
第二章 實驗方法與實驗設備 27
2-1實驗架構與流程 27
2-2脈衝雷射沉積系統 28
2-2-1雷射系統光路 28
2-2-2雷射系統元件 29
2-2-3 PLD觸媒樣品製作 30
2-3 Dealloy製程 31
2-4使用連續波雷射退火系統強化觸媒化學耐久性 31
2-4-1 雷射系統元件樣品座 32
2-5 MEA製作方式 32
2-5-1觸媒漿料調配與塗佈 33
2-5-2 MEA熱壓方式 33
2-6 觸媒檢測方式 34
2-6-1 物理微結構之觀測 34
2-6-2 電化學性能測定 39
2-7燃料電池系統分析 44
2-7-1 I-V曲線量測 47
2-7-2電子阻抗頻譜測試 48
第三章 實驗結果與討論 51
3-1 應用PLD製備Pt3Co奈米顆粒觸媒於PEMFC陰極端 51
3-1-1 Pt與Pt3Co觸媒於相同總擔載量之燃料電池性能比較 51
3-1-2 電池陰極端使用不同觸媒材料之EIS分析 52
3-1-3 Pt與Pt3Co觸媒電化學性能比較 53
3-1-4 Pt與Pt3Co觸媒表面形貌結構及觸媒顆粒影響 53
3-2 Dealloy製程應用於Pt3Co奈米顆粒觸媒層於PEMFC陰極端…...55
3-2-1不同Dealloy製程時間對相同Pt3Co奈米觸媒擔載量之燃料電池性能比較 55
3-2-2不同Dealloy製程時間對相同Pt3Co奈米觸媒擔載量之EIS分析 56
3-2-3 不同Dealloy製程時間對相同Pt3Co奈米觸媒擔載量之電化學性能比較 58
3-2-4 不同Dealloy製程時間對相同Pt3Co奈米觸媒擔載量之表面形貌結構及觸媒顆粒影響 60
3-3 結合CWLP強化最佳Dealloy製程時間之Pt3Co奈米顆粒觸媒耐久性……………………………………………...…………………………..61
3-3-1 不同CWLP能量對相同Dealloy製程時間之燃料電池性能比較………………………………………………………………………..…...61
3-3-2 不同CWLP能量對相同Dealloy製程時間之Pt3Co奈米觸媒擔載量之燃料電池EIS分析 62
3-3-3 不同CWLP能量對相同Dealloy製程時間之Pt3Co奈米顆粒觸媒之電化學性能比較 64
3-3-4 不同CWLP能量對相同Dealloy製程時間之Pt3Co奈米顆粒觸媒之表面形貌結構及觸媒顆粒影響 65
3-3-5 CWLP製程對Pt3Co奈米顆粒觸媒層影響 66
3-3-6 不同CWLP能量之Pt3Co奈米觸媒耐久性測試 68
3-3-7不同製程對Pt3Co奈米顆粒觸媒層之影響 70
第四章 結論 72
第五章 未來展望 73
第六章 參考文獻 74
參考文獻 [1] 王智薇,“淺談新興能源科技產業─氫能與燃料電池”,產經資訊,(2008)。
[2] R. O’Hayre, S.W. Cha, W. Colella, F.B. Prinz, “Fuel cell fundamentals”, John Wiley & Sons, 2005.
[3] S. M. Haile, “Fuel cell material and components”, Acta Materialia, Vol. 51, pp. 5981-6000, 2003.
[4] 黃鎮江,”燃料電池” ,全華圖書,2005。
[5] 趙中興,”燃料電池基礎”,全華圖書,2008。
[6] Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, X. C. Adroher, “A Review of Polymer Electrolyte Membrane Fuel Cells: Technology, Applications, and Needs on Fundamental Research”, Appl. Energy, Vol. 88, pp. 981–1007, 2011.
[7] L. Xiong, A. Manthiram, “High Performance Membrane-Electrode Assemblies with Ultra-Low Pt Loading for Proton Exchange Membrane Fuel Cells”, Electrochim. Acta, Vol. 50, pp. 3200-3204, 2005.
[8] H. N. Su, S. J. Liao, T. Shu, H. L. Gao, “Performance of an Ultra-Low Platinum Loading Membrane Electrode Assembly Prepared by a Novel Catalyst-Sprayed Membrane Technique”, J. Power Sources, Vol. 195, pp. 756-761, 2010.
[9] http://www.toray-eng.com/lcd/coater/lineup/esc.html
[10] H. Morikawa, N. Tsuihiji, T. Mitsui, and K. Kanamura, “Preparation of Membrane Electrode Assembly for Fuel Cell by Using Electrophoretic Deposition Process”, J. Electrochem. Soc., Vol. 151, pp. 1733-1737, 2004.
[11] F. F. Onana, N. Guillet, A. M. AlMayouf, “Modifed Pulse Electrodeposition of Pt Nanocatalyst as High-Performance Electrode for PEMFC”, J. Power Sources, Vol. 271, pp. 401-405, 2014.
[12] H. Kim, N.P. Subramanian, B.N. Popov, “Preparation of PEM Fuel Cell Electrodes Using Pulse Electrodeposition”, J. Power Sources, Vol. 138, pp. 14-24, 2004.
[13] S. Cuynet, A. Caillard, T. Lecas, J. Bigarre, P. Buvat, P. Brault, “Deposition of Pt inside Fuel Cell Electrodes Using High Power Impulse Magnetron Sputtering”, J. Phys. D: Appl. Phys., Vol. 47, pp. 272001, 2014.
[14] M. S. Cogenli, S. Mukerjee, A. B. Yurtcan, “Membrane Electrode Assembly with Ultralow Platinum Loading for Cathode Electrode of PEM Fuel Cell by Using Sputter Deposition”, Fuel Cells, Vol. 15, pp. 288-297, 2015.
[15] A. Khan, B. K. Nath, J. Chutia, “Nanopillar Structured Platinum with Enhanced Catalytic Utilization for Electrochemical Reactions in PEMFC”, Electrochim. Acta, Vol. 146, pp. 171-177, 2014.
[16] M.S. Saha, A.F. Gull’, R.J. Allen, S. Mukerjee, “High Performance Polymer Electrolyte Fuel Cells with Ultra-Low Pt Loading Electrodesprepared by Dual Ion-Beam Assisted Deposition”, Electrochim. Acta, Vol. 51, pp. 4680-4692, 2006.
[17] https://www.itrc.narl.org.tw/Bulletin/News/ald.php
[18] T. Shu, D. Dang, D. W. Xu, R. Chen, S. J. Liao, C. T. Hsieh, A. Su, H. Y. Song, L. Du, “High-Performance MEA Prepared by Direct Deposition of Platinum on the Gas Diusion Layer Using an Atomic Layer Deposition Technique”, Electrochim. Acta, Vol. 177, pp. 168-173, 2015.
[19] N. Cunningham, E. Irissou, M. Lefe`vre, M. C. Denis, D. Guay, “PEMFC Anode with very Low Pt Loadings Using Pulsed Laser Deposition”, Electrochem. Solid-State Lett., Vol. 6, pp. 125-128, 2003.
[20] H. Qayyum, C. J. Tseng, T. W. Huang, S. Y. Chen, “Pulsed Laser Deposition of Platinum Nanoparticles as a Catalyst for High-Performance PEM Fuel Cells”, Catalysts, Vol. 6, pp. 180, 2016.
[21] T. W. Huang, H. Qayyum, G. R. Lin, S. Y. Chen, C. J. Tseng , “Production of High-Performance and Improved-Durability Pt-Catalyst/Support for Proton-Exchange-Membrane Fuel Cells with Pulsed Laser Deposition”, J. Phys. D Appl. Phys. Vol. 49, pp. 255601, 2016.
[22] H. Xu, E. Brosha, F. Garzon, F. Uribe, M. Wilson, B. Pivovar, “The Effect of Electrode Ink Processing and Composition Catalyst Utilization” ECS Trans., Vol. 11, pp. 383–391, 2007.
[23] C. Wang, M. Waje, X. Wang, J. M. Tang, R. C. Haddon, Y. Yan, “Proton Exchange Membrane Fuel Cells with Carbon Nanotube based Electrodes”, Nano Lett., Vol. 4,pp. 345–348, 2004.
[24] N. Cunningham, E. Irissou, M. Lefe`vre, M. C. Denis, D. Guay, “PEMFC Anode with very Low Pt loadings using pulsed laser deposition”, Electrochem. Solid-State Lett., Vol. 6, pp. 125-128, 2003.
[25] W. Mroz, B. Budner, W. Tokarz, P. Piela, M. L. Korwin-Pawlowski, “Ultra-Low-Loading Pulsed-Laser-Deposited Platinum Catalyst Films for Polymer Electrolyte Membrane Fuel Cells”, J. Power Sources, Vol. 273, pp. 885-893, 2015.
[26] A. Brouzgou, S. Q. Song,P. Tsiakaras, “Low and Non-Platinum Electrocatalysts for PEMFCs: Current Status, Challenges and Prospects”, Applied Catalysis B: Environmental, Vol. 127, pp. 371-388, 2012.
[27] S. M. Haile, “Fuel Cell Material and Components”, Acta Materialia, Vol. 51, pp. 5981-6000, 2003.
[28] Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, X.C. Adronher. “A Review of Polymer Electrolyte Membrane Fuel Cells:Technology, Applications and Needs on Fundamental Research”, Applied Energy, Vol, 88, pp. 981-1007, 2011.
[29] http://www.goldgold168.com/palladium.php#.WyjZR1X-jRY
[30] U.S. Department of Energy, “Fuel Cell System Cost”, 2017.
[31] Y. F. Zhai, H. Zhang, D.Xing, Z. G. Shao, “The Stability of Pt/C Catalyst in H3PO4/PBI PEMFC During High Temperature Life Test”, J. Power Sources, Vol. 164, pp. 126-133, 2007.
[32] J. Wu, X. Z. Yuan, J. J. Martin, H. Wang, J. Zhang, J. Shen, S. Wu, W. Merida, “A Review of PEM Fuel Cell Durability:Degradation Mechanisms and Mitigation Strategies”, J. Power Sources, Vol. 184, pp. 104-119, 2008.
[33] M. D. Macia?, J. M. Campin?a, E. Herrero, J. M. Feliu, “On the Kinetics of Oxygen Reduction on Platinum Stepped Surfaces in Acidic Media”, J. Electroanal. Chem., Vol. 564, pp. 141?150, 2004.
[34] A. Kuzume, E. Herrero, J. M. Feliu, “Oxygen Reduction on Stepped Platinum Surfaces in Acidic Media”, J. Electroanal. Chem., Vol. 599, pp. 333?343, 2007.
[35] A. M. Go?mez-Marin, R. Rizo, J. M. Feliu, “Some Reflections on the Understanding of the Oxygen Reduction Reaction at Pt(111)”, Beilstein J. Nanotechnol., Vol. 4, pp. 956?967, 2013.
[36] A. M. Go?mez-Marin, J. M. Feliu, “Oxygen Reduction on Nanostructured Platinum Surfaces in Acidic Media: Promoting Effect of Surface Steps and Ideal Response of Pt(111)”, Catal. Today, Vol. 244, pp. 172?176, 2015.
[37] M. Shao, A. Peles, K. Shoemaker, “Electrocatalysis on Platinum Nanoparticles: Particle Size Effect on Oxygen Reduction Reaction Activity. Nano Lett”, Vol. 11, pp. 3714?3719, 2011.
[38] Q. Jia, W. Liang, M. K. Bates, P. Mani, W. Lee, S. Mukerjee, “Activity Descriptor Identification for Oxygen Reduction on Pt-Based Bimetallic Nanoparticles: In Situ Observation of the Linear Composition-Strain-Activity Relationship” ACS Nano, Vol. 9, pp. 387?400, 2015.
[39] I. E. L. Stephens, A. S. Bondarenko, U. Gronbjerg, J. Rossmeisl, I. Chorkendorff, “Understanding the Electrocatalysis of Oxygen Reduction on Platinum and Its Alloys” Energy Environ. Sci., Vol. 5, pp. 6744?6762, 2012.
[40] C. Wang, M. Chi, D. Li, D. Strmcnik, D. van der Vliet, G. Wang, V. Komanicky, K.-C. Chang, A. P. Paulikas, D. Tripkovic, “Design and Synthesis of Bimetallic Electrocatalyst with Multilayered Pt-Skin Surfaces”, J. Am. Chem. Soc., Vol. 133, pp. 14396?14403, 2011.
[41] V. R. Stamenkovic, B. S. Mun, M. Arenz, K. J. Mayrhofer, C. A. Lucas, G. Wang, P. N. Ross, N. M. Markovic, “Trends in Electrocatalysis on Extended and Nanoscale Pt-Bimetallic Alloy Surfaces”, Nat. Mater., Vol. 6, pp. 241?247, 2007.
[42] S. J. Hwang, S.-K. Kim, J.-G. Lee, S.-C. Lee, J. H. Jang, P. Kim, T.-H. Lim, Y.-E. Sung, S. J. Yoo, “Role of Electronic Perturbation in Stability and Activity of Pt-Based Alloy Nanocatalysts for Oxygen Reduction”, J. Am. Chem. Soc., Vol. 134, pp. 19508?19511, 2012.
[43] T.-Y. Jeon, S. J. Yoo, Y.-H. Cho, K.-S. Lee, S. H. Kang, Y.-E. Sung, “Influence of Oxide on the Oxygen Reduction Reaction of Pt. Carbon-Supported Ni Alloy Nanoparticles”, J. Phys. Chem. C, Vol. 113, pp. 19732-19739, 2009.
[44] E. J. Coleman, M. H. Chowdhury, A. C. Co, “Insights into the Oxygen Reduction Reaction Activity of Pt/C and PtCu/C Catalysts”, ACS Catal, Vol. 5, pp. 1245?1253, 2015.
[45] K. J. J. Mayrhofer, D. Strmcnik, B. B. Blizanac, V. Stamenkovic, M. Arenz, N. M. Markovic, “Measurement of Oxygen Reduction Activities via the Rotating Disc Electrode Method: From Pt Model Surfaces to Carbon-Supported High Surface Area Catalysts”, Electrochim. Acta, Vol. 53, pp. 3181?3188, 2008.
[46] Y.-J. Wang, N. Zhao, B. Fang, H. Li, X. T. Bi, H. Wang, “Carbon-Supported Pt-Based Alloy Electrocatalysts for the Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells: Particle Size, Shape, and Composition Manipulation and Their Impact to Activity”, Chem. Rev., Vol. 115, pp. 3433?3467, 2015.
[47] J. Greeley, I. E. L. Stephens, A. S.Bondarenko, T. P. Johansson, H. A. Hansen, T. F. Jaramillo, J. Rossmeisl, I. Chorkendorff, J. K. Norskov., “Alloys of Platinum and Early Transition Metals as Oxygen Reduction Electrocatalysts”, Nature Chem., Vol. 1, pp. 552 – 556, 2009
[48] K. Jayasayee, J. A. R. Van Veen, T. G. Manivasagam, S. Celebi, E. J. M. Hensen, F. A. de Bruijn, “Oxygen Reduction Reaction (ORR) Activity and Durability of Carbon Supported PtM (Co, Ni, Cu) Alloys: Influence of Particle Size and Non-Noble Metals”, Appl. Catal., B, Vol. 111 , pp. 515?526, 2012.
[49] R. R. Adzic, “Platinum Monolayer Electrocatalysts: Tunable Activity, Stability, and Self-Healing Properties. Electrocatalysis”, Vol. 3, pp. 163?169, 2012.
[50] R. R. Adzic, J. Zhang, K. Sasaki, M. B. Vukmirovic, M. Shao, J. X. Wang, A. U. Nilekar, M. Mavrikakis, J. A Valerio, F. Uribe, “Platinum Monolayer Fuel Cell Electrocatalysts. Top”, Catal., Vol. 46, pp. 249?262, 2007.
[51] W.-P. Zhou, K. Sasaki, D. Su, Y. Zhu, J. X. Wang, R. R. Adzic, “Gram-Scale-Synthesized Pd2Co-Supported Pt Monolayer Electrocatalysts for Oxygen Reduction Reaction.”, J. Phys. Chem. C, Vol. 114, pp. 8950?8957, 2010.
[52] J. Zhang, K. Sasaki, E. Sutter, R. R. Adzic, “Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters”, Science, Vol. 315, pp. 220?222, 2007.
[53] J. L. Zhang, M. B. Vukmirovic, Y. Xu, M. Mavrikakis, R. R. Adzic, “Controlling the Catalytic Activity of Platinum-Monolayer Electrocatalysts for Oxygen Reduction with Different Substrates”, Angew. Chem., Int. Ed., Vol. 44, pp. 2132?2135, 2005.
[54] B. Han, C. E. Carlton, J. Suntivich, Z. Xu, Y. Shao-Horn, “Oxygen Reduction Activity and Stability Trends of Bimetallic Pt0.5M0.5 Nanoparticle in Acid”, J. Phys. Chem. C, Vol. 119 , pp. 3971?3978, 2015.
[55] F. J. Lai, W. N. Su, L. S. Sarma, D. G. Liu, C. A. Hsieh, J. F. Lee, B. J. Hwang, “Chemical Dealloying Mechanism of Bimetallic Pt–Co Nanoparticles and Enhancement of Catalytic Activity toward Oxygen Reduction”, Chem. Eur. J., Vol. 16, pp. 4602 – 4611, 2010.
[56] K. A. Kuttiyiel, K. Sasaki, Y. Choi, D. Su, P. Liu, R. R. Adzic, “Nitride Stabilized PtNi Core-Shell Nanocatalyst for High Oxygen Reduction Activity”, Nano Lett., Vol. 12, pp. 6266?6271, 2012.
[57] K. A. Kuttiyiel, Y. Choi, S.-M. Hwang, G.-G. Park, T.- H. Yang, D. Su, K. Sasaki, P. Liu, R. R. Adzic, “Enhancement of the Oxygen Reduction on Nitride Stabilized Pt-M (M = Fe, Co, and Ni) Core- Shell Nanoparticle Electrocatalysts”, Nano Energy, Vol. 13, pp. 442?449, 2015.
[58] B. Han, C. E. Carlton, A. Kongkanand, R. S. Kukreja, B. R. Theobald, L. Gan, R. O′Malley, P. Strasser, F. T. Wagnerd, S. H. Yang, “Record Activity and Stability of Dealloyed Bimetallic Catalysts for Proton Exchange Membrane Fuel Cells”, Energy Environ. Sci., Vol. 8, pp. 258–266, 2015.
[59] 林冠任,“利用脈衝雷射沉積技術成長PEMFC 鉑奈米顆粒觸媒”,國立中央大學,碩士論文,2015年。
[60] 黃亭維,“應用脈衝雷射技術製備高穩定性與高性能之鉑奈米顆粒並應用於燃料電池觸媒層”,國立中央大學,碩士論文,2016年。
[61] Z. Qi, A. Kaufman, “Low Pt Loading High Performance Cathodes for PEM Fuel Cells”, J. Power Sources, Vol. 113, pp. 37-43, 2003.
[62] E. Antolini, L. Giorgi, A. Pozio, E. Passalacqua, “Influence of Nafion Loading in the Catalyst Layer of Gas Diffusion Electrodes for PEMFC”, J. Power Sources, Vol. 77, pp. 136-142, 1999.
[63] S.W. Mahlon, A.V. Judith, G. Shimshon, “Low Platinum Poading Electrodes for Polymer Electrolyte Fuel Cells Fabricated Using Thermoplastic Ionomers”, Electrochim. Acta, Vol. 40, pp. 355-363, 1995.
[64] T. Frey, M. Linardi, “Effects of Membrane Electrode Assembly Preparation on the Polymer Electrolyte Membrane Fuel Cell Performance”, Electrochim. Acta, Vol. 50, pp. 99-105, 2004.
[65] A. L. Patterson, “The Scherrer formula for x-ray particle size determination” Phys. Rev., 56, 978–82, (1939).
[66] J. M. Rodriguez, J. A. H. Melivn, J. P. Pena, “Determination of the Real Surface Area of Pt Electrodes by Hydrogen Adsorption Using Cyclic Voltammetry”, J. Chem. Educ., Vol. 77, pp. 1195–7, 2000.
[67] D. A. Jones, “Principle and Prevention of Corrosion”, Pearson, 2nd edition, 1995.
[68] Y. Xia et al., “Development of Half-Cells with Sulfonated Pt/Vulcan Catalyst for PEM Fuel Cells”, J. Electroana. Chem., Vol. 724, pp. 62-70, 2014.
[69] X. Wang, Z. Tan, M. Zeng and J. Wang, “Carbon Nanocages: a New Support Material for Pt Catalyst with Remarkably High Durability”, Sci. Rep., Vol. 4, pp. 4437,2014.
[70] C. J. Tseng, B. T. Tsai, Z. S. Liu, T. C. Cheng, W. C. Chang and S. K. Lo, “A PEM Fuel Cell with Metal Foam as Flow Distributor”, Energy Convers. Manage., Vol. 62, pp. 14-21, 2012.
[71] 吳佩蓉,「腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究」,國立中央大學,碩士論文,2013年。
指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2018-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明