摘要(英) |
The bank evaluates the credit default risk by using the financial ratios to analyze the financial pointers of the credit customers in practice, and translates the financial ratios into score to provide reference for credit decision making. In order to explore the possible range of financial ratios ensuring credit security or inducing credit default, and confirm the prediction effect of financial ratio score for credit default, this article takes the publicly held corporations outside the financial industries from 1997 to 2016 as the research object differentiated into contrast group without distinguishing whether or not to default totaling 2,181 companies and default group total 55 companies, references financial ratio scoring standard of large enterprises commonly used in bank credit practice, full score in hundred, calculates the score of various financial ratios from four financial aspects including debt-paying ability, financial structure, profitability and operating efficiency, and compares the correlation between the financial ratio score and credit default respectively according to industry, year, contrast group and default group.
The conclusions of this article are as follows:
1.The financial ratio score of contrast group is the average of 75.50. Each industry low and high range is 64.78~80.87. The nature of the industry is different, and the level of financial ratios varies. Each year low and high range is 70.84~79.03. In addition to the financial ratios of the profitability are easy to be influenced by economic boom, the financial ratios of the remaining financial aspects are not much of a fluctuation.
2.The financial ratio score average of default group four years prior to default is 62.88, 60.27, 55.76 and 49.21, significantly downward trend. The score average three years prior to default is 55.08, compared to contrast group average 75.50, margin about 20. Evidently financial ratio score does have a certain degree of prediction effect for bank credit default risk, available for the bank credit risk assessment reference. |
參考文獻 |
中文文獻
〔1〕王粹馨,2003 年,「商業銀行如何檢視信用評等表之良窳」,國立中央大學財務金融學系碩士在職專班碩士論文。
〔2〕尹賢瑜等,2015年12月,「建構企業財務危機預警模型-考慮財務與公司治理因素」,德明學報,第三十九卷,第二期,37-58頁。
〔3〕石月華,1993年,「建立銀行授信信用評估模式之研究」,交通大學管理科學研究所碩士論文。
〔4〕林淑萍等,2007年6月,「企業危機預警模式之研究-DEA-DA、邏輯斯迴歸與類神經網路之應用」,會計與公司治理,第四卷,第一期,35-56頁。
〔5〕沈中華,鄧志豪,2000年,「銀行及投資人如何由財務報表偵測地雷公司」,存款保險資訊季刊,14(1),56-79頁。
〔6〕金融聯合徵信中心,2017年11月,「產業分析統計資訊」資訊內容說明。
〔7〕陳錦村,1995年,「以財務比率評估銀行授信風險」,財團法人金融聯合徵信中心。
〔8〕許溪南等,2007年6月,「公司治理、盈餘管理與財務預警模型之建構」,會計與公司治理,第四卷,第一期,85-121頁。
〔9〕陳乙文、黃玲羢,2005年,「影響財務危機預警模型因子之研究」,建國科大學報,24(2),153-168頁。
〔10〕黃振豊,呂紹強,2000年11月,「企業財務危機預警模式之研究-以財務及非財務因素構建」,當代會計,第一卷,第一期,19-40頁。
〔11〕黃劭彥等,2006年,「以經營效率觀點建立台灣資訊電子業財務危機預警模型」,文大商管學報,vol 11,No 2.,1-20頁。
〔12〕潘玉葉,1990年,「臺灣股票上市公司財務危機預警分析」,淡江大學管理科學研究所博士論文。
〔13〕鄧志豪,2000年,「以分類樣本偵測地雷股-新財務危機預警模型」,國立政治大學金融學系碩士論文。
〔14〕羅江梅,2010年10月,「虛假財務報表的識別研究」,商場現代化,總第627期,180頁。
英文文獻
〔1〕Altman, E.I., 1968, “Financial ratios: Discriminant analysis and the prediction of corporate bankruptcy”, Journal of Finance 23(4) pp.589-609.
〔2〕Beaver, W.H., 1966, “Financial ratios as predictors of failure”, Journal of Accounting Research, 4(3), pp.71-111.
〔3〕Blum, M., 1974,“Failing Company Discriminant Analysis”, Journal of Accounting Research, pp.1-25.
〔4〕Coats, P.K. and L.F. Fant.,1993, “Recognizing financial distress patterns using a neural network tool”, Financial Management, 22(3), pp.307-327.
〔5〕Deakin, E. B., 1972, “A discriminant analysis of predictors of business failure”, Journal of Accounting Research, 10(1), pp.167-179.
〔6〕Fitzpatrick, P.J., 1932, “A comparison of the ratios of successful industrial enterprises with those of failed companies”, The Certified Public Accountant.
〔7〕Harlan D. Platt and Marjorie B. Platt, 1991,“A note on the use of industry-relative ratios in bankruptcy prediction”,Journal of Banking and Finance, 15, pp.1183-1194.
〔8〕Martin, D., 1977,“Early warning of bank failure”, Journal of Banking and Finance, volume 1, issue 3, pp.249-276.
〔9〕Mensah,Yaw M., 1984,“An Examination of the Stationarity of Multivariate Bankruptcy Prediction Models﹕A Methodological Study”,Journal of Accounting Research, vol. 22, issue 1, pp.380-395.
〔10〕Odom, M.D. and R.Sharda., 1990, “A neural network model for bankruptcy prediction”, IEEE INNS IJCNN, volume 2, pp.163-168.
〔11〕Ohlson,J.A., 1980,“Financial ratios and the probabilistic prediction of bankruptcy”, Journal of Accounting Research, 18(1), pp.109-131.
〔12〕Orgler, Y.E., 1970, “A Credit Scoring Model for Commercial Loans”, Journal of Money, Credit and Banking, pp.435-445. |