博碩士論文 105350606 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:77 、訪客IP:18.117.154.134
姓名 普吉拉(Punjira Phongha)  查詢紙本館藏   畢業系所 國際永續發展碩士在職專班
論文名稱 應用 Sentinel-1 合成孔徑雷達資料進行地層下陷監測 - 以 2017 年泰國曼谷都 會區為例
(Measuring Bangkok Metropolitan Land Subsidence in 2017 Using Sentinel-1 SAR Data)
相關論文
★ 評估不同數值地型資料於降雨型崩塌作用模式之應用性-以小尺度坡面之崩塌事件為例★ 應用最大熵法於蒙古山區進行森林樹種分類
★ 利用Landsat衛星影像監測並預測中美洲瓜地馬拉首都–瓜地馬拉市之都市發展★ 都市化與發展:對海地永續發展之意涵
★ 客家文化重點發展區之客家政策研究:以龍潭大池整體環境規劃與營造計畫為例★ 利用多時期Landsat衛星影像進行森林砍伐之評估 -以尼加拉瓜波沙瓦生態保護區為例
★ 融合光學衛星影像及地形資訊進行崩塌地之判釋★ 應用Sentinel-1 SAR影像進行水稻監測-以泰國中部大城府省為例
★ 都市三維結構變遷之分析-以臺灣臺北市為例★ 利用人工神經網絡模型建立多事件為基礎之崩塌模型-以台灣玉山國家公園為例
★ 應用衛星影像於都市發展之監測與預測 ─以台灣桃園為例★ 分析降雨及不透水面對台南水患發生之影響
★ 應用Google Earth Engine與影像分類技術於巴拉圭查科地區進行森林砍伐評估★ 應用多時期Sentinel-1 合成孔徑雷達影像進行崩塌及淹水偵測-以印尼爪哇島Pacitan地區為例
★ 母岩裸露指標之建立並應用於崩塌判釋與監測★ 應用邏輯斯迴歸整合土壤含水量與臨界降雨之崩塌預測模式-以高屏溪流域為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 衛星遙測在近十年來扮演一個重要的腳色,利用合成孔徑雷達觀測地表變形非常有 效。在 2014 年 ESA 發射 Sentinel-1 衛星之前,高解析度的合成孔徑雷達影像是很昂貴的, 這種影像可以提供一個很全面的地表變形觀測。
在這個研究中,利用合成孔徑雷達干涉用以觀測泰國曼谷市區的地表變形。合成孔 徑雷達干涉在時間上和空間上有高度的不確定性。這個研究顯示利用 Sentinel-1A 合成孔 徑雷達的短時間以及空間基線,可以得到很好的測量結果。在這研究中,利用 2017 年 3 月到 12 月,空間基線小於 50 公尺,時間基線小於 120 天的 Sentinel-1A 合成孔徑雷達影 像。因此空間和時間上的失相關性非常高。2015~2016 年的資料在配準影像上有一些問題, 因此這個研究只有用 2017 年的資料,因為精準的配準影像對於精確的量測相位差異及消 除造訊非常重要。
合成孔徑雷達量測的結果顯示,在曼谷市區,Samut Prakarn 有急遽的下陷,每年約 20~30 毫米,在曼谷中心的東側 Chao Phraya river 顯示相對緩慢的下陷速率約每年 15 毫 米。這結果也發現Bang Kho Laem, Sathon and Yannawa District下陷速率高達每年40毫米。 此外,對比 Royal Thai Survey Department 2016 年水準測量的結果顯示合成孔徑雷達干涉 的測量結果與其只有微小的差異。這個研究提供曼谷市區近期地層下陷速率,也說明 Sentinel-1 資料在地層下陷速度的應用,可以地層下陷區域的災害防治和土地管理有相當 的貢獻。
摘要(英) Satellite remote sensing plays an important role during the last decades. Its potential had been demonstrated to be an effective data for land deformation monitoring, by using the synthetic aperture radar (SAR) image. However, the most high-resolution SAR images are costly until Sentinel-1 SAR imagery freely offered by ESA since 2014, which covers wide-area coverage connected to a relatively high spatial resolution, therefore allowing obtains a comprehensive outlook of the deformation phenomena.
In this study, interferometric synthetic aperture radar (InSAR) technique were used to monitor land subsidence over Bangkok Metropolitan Area, Thailand. The application of InSAR technique in measuring land deformation has higher uncertainty when spatial and temporal decorrelation are involved. This study demonstrated that, with applying Sentinel-1A SAR data, image pairs can be collected with smaller perpendicular baselines and lower temporary discrepancy, leading to better measuring results. In this study, Sentinel-1A SAR data were collected from March to December in 2017 with the baseline within 50 m and 120 days. Therefore, spatial and temporal decorrelation have a negligible contribution. Because well co-registration is important for the accurate determination of phase difference and for noise reduction, data in 2017 was only used in this study, due to poor co-registration of data obtained in 2015-2016.
InSAR measuring results reveal that, in Bangkok Metropolitan Area, Samut Prakarn has been subsiding rapidly at the rate of 20-30 mm/yr, and Central Bangkok on the east of Chao Phraya river appears to be subsiding relatively slowly at rates around 15 mm/yr. Results also indicate fast subsiding areas in Bang Kho Laem, Sathon and Yannawa District, with strong subsidence around 40 mm/yr. In addition, the InSAR measurements were compared with Royal Thai Survey Department (RTSD) leveling rates in 2016, showing minor difference between the two data sets. This study maps the recent land subsidence rates over Bangkok Metropolitan Area, and also illustrates the applicability of Sentinel-1 data in land subsidence monitoring, which can be significantly contribute to the hazard prevention and land management for low land areas in Thailand.
關鍵字(中) ★ 地層下陷
★ 曼谷市區
★ 合成孔徑雷達干涉
★ 失相關
關鍵字(英) ★ Sentinel-1
★ Decorrelation
★ Land subsidence
★ Bangkok Metropolitan Area
論文目次 TABLE OF CONTENTS
CHINESE ABSTRACT i
ABSTRACT ii
ACKNOWLEDGEMENTS iii
TABLE OF CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES ix
ACRONYMS x
NOTATIONS xii
CHAPTER 1 – INTRODUCTION 1
1.1 Research Background 1
1.2 Statement of Research problem 5
1.3 Research Objectives 5
CHAPTER 2 – LITERATURE REVIEW 6
2.1 Land subsidence in Bangkok 6
2.1.1 Previous studies on Bangkok subsidence 7
2.1.2 Existing methods to determine subsidence 8
2.1.3 Control and mitigation 10
2.1.4 Evidence of subsidence 11
2.2 Feasibility study of the Sentinel-1 for subsidence detection 13
2.3 Basic synthetic aperture radar (SAR) 13
2.4 Interferometric phase decorrelation and limitations 15
2.4.1 Phase noise 15
2.4.2 Decorrelation source 15
2.4.3 Orbital errors 16
2.4.4 DEM errors 17
2.4.5 Atmospheric effects 17
2.5 Interferometric SAR (InSAR) Technique 17
2.6 Development in SAR Interferometry 19
CHAPTER 3 – STUDY AREA 22
3.1 General Information 22
3.2 Geological Setting and Hydrogeological Setting 23
3.2.1 Geological Setting 23
3.2.2 Hydrogeological Setting 24
3.3 Urbanization and Groundwater Extraction 25
CHAPTER 4 – DATA COLLECTION 27
4.1 Digital Elevation Model (DEM) Data 27
4.2 Satellite Data 27
4.3 Auxiliary Data 30
4.3.1 Land Use Data 30
4.3.2 Leveling Data 30
CHAPTER 5 – METHODOLOGY 32
5.1 Software 32
5.2 InSAR 33
5.2.1 General Concept 34
5.2.2 Data Processing 34
5.2.1.1 Image Pre-processing 34
5.2.1.2 InSAR Workflow 35
5.3 Perpendicular Baseline Estimation 38
CHAPTER 6 – RESULTS 40
6.1 Coherence map 40
6.2 Land subsidence analysis in Bangkok Metropolitan Area 41
6.3 Comparison InSAR result with leveling data 46
CHAPTER 7 – DISCUSSION 50
7.1 Discussion of surface geological map 50
7.2 Discussion of leveling data 55
7.3 Discussion of SAR imagery cost 56
CHAPTER 8 – CONCLUSION AND SUGGESTIONS 58
8.1 Conclusion 58
8.2 Suggestions 59
REFERENCES 60
參考文獻 Anterrieu, E., Waldteufel, P., Caudal, G., 2003. About the effects of instrument errors in interferometric radiometry. Radio Science, 38(3). doi: 10.1029/2002rs002750.
Aobpaet, A., Cuenca, M., Hooper, A., Trisirisatayawong, I., 2013. InSAR time- series analysis of land subsidence in Bangkok, Thailand. International Journal of Remote Sensing 34(8), pp. 2969-2982, doi: 10.1080/01431161.2012.756596.
Argenti, F., Lapini, A., Bianchi, T., Alparone, L., 2013. A Tutorial on Speckle Reduction in Synthetic Aperture Radar Images. IEEE Geoscience and Remote Sensing Magazine, 1(3), 6-35. http://dx.doi.org/10.1109/mgrs.2013.2277512.
Asian Institute of Technology (AIT), 1981. Investigation of land subsidence caused by deep well pumping in the Bangkok area, Research Report 91. Asian Institute of Technology, Bangkok, Thailand.
Asian Institute of Technology (AIT), 1982. Groundwater resources in Bangkok area: Development and management study, Research Report 137. Asian Institute of Technology, Bangkok, Thailand.
Bahr, T., 2012. Professional SAR Data Processing, Retrieved January 29, 2017, from http://conference.vde.com/eusar/2016/Exclusive/Documents/EUSAR%202012SAR%20Tutorial_ExelisVIS.pdf.
Baodong, M., Lixin, W., Shanjun, L., 2008. Remote sensing detection for subsidence- resulted water body and solid-waste dump in coal mine: Yanzhou being a case. Remote
Sensing and Spatial Information Sciences 37, pp. 269-272.
Bergado, D.T., Nutalaya, P., Balasubramaniam, A.S., Apaipong, W., Chang, C.C., Khaw, L.G.,
1988. Causes, effects, and predictions of land subsidence in AIT Campus, Chao Phraya Plain, Bangkok, Thailand. Environmental & Engineering Geoscience 24(1), pp. 57-81, doi: 10.2113/gseegeosci.xxv.1.57.
Berardino, P., Fornaro, G., Lanari, R., Sansosti, E., 2002. A new algorithm for surface
deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience And Remote Sensing, 40(11), pp. 2375-2383. doi: 10.1109/tgrs.2002.803792.
Blanco-Sanchez, P., Mallorqui, J., Duque, S., Monells, D., 2008. The Coherent Pixels Technique (CPT): An Advanced DInSAR Technique for Nonlinear Deformation Monitoring. Pure and Applied Geophysics, 165(6), pp.1167-1193.doi:10.1007/s00024-008-0352-6.
Buapeng, S., Wattayakorn, G., 2008. Groundwater Situation in Bangkok and Its Vicinity. Hydro Change 2008 in KYOTO, doi:10.13140/2.1.1734.7528.
Bureau of Groundwater Control Department of Groundwater Resources, 2010. Impact study on underground structure due to restoration of groundwater pressure in Bangkok and its vicinity, Retrieved 2 January 2018, from http://www.dgr.go.th/project_kpn/file/2552-1/Expdf.pdf.
Calamia, M., Franceschetti, G., Lanari, R., Francesco, C., Mariarosaria, M., 2009. Comparison and integration of GPS and DInSAR deformation time-series. IEEE Aerospace Conference Proceedings, doi: 10.1109/AERO.2009.4839342.
Canaslan, F., Ustun, A., 2012. Impact of Perpendicular and Temporal Baseline Characteristics on InSAR Coherence Maps. Remote Sensing, 1, pp.57-67.
City Population, 2017. Thailand: Bangkok Metropolitan Region, Retrieved July 28, 2017, from http://www.citypopulation.de/php/thailand- bangkokmetropolitan.php.
Coplin, S. L., Galloway, D., 2015. HOUSTON-GALVESTON, TEXAS: Managing coastal subsidence, Retrieved 19 April 2018, from http://www.sjra.net/wp-content/uploads/2015/01/Click-here-to-read-more-about-Subsidence-in-this-report-by-the-U.S.-Geological-Survey-Circular-1182.pdf.
Costantini, M., 1998. A Novel Phase Unwrapping Method Based On Network Programming. IEEE Transactions On Geoscience And Remote Sensing 36 (3): pp.813-821. doi:10.1109/36.673674.
Cox, J.B., 1968. A Review of the Engineering Characteristics of the Recent Marine Clays in Southeast Asia, Research Report vol. 6. Asian Institute of Technology, Bangkok, Thailand.
Deltares, 2014. Sinking cities: An integrated approach towards solutions, Retrieved 19
March 2018, from https://fallmeeting.agu.org/2014/files/2014/12/Subsidence-brochure_Sinking-cities_Deltares_final1.pdf.
DGR (Department of Groundwater Resources), 2012. A systematic study of ground
subsidence in the groundwater crisis. Report submitted to Department of Groundwater Resources.
Duc N.A., 1999. Updating and analysis of Bangkok land subsidence caused by deep well pumping with emphasis on shallow soil settlement, Master Thesis. Asian Instituteof Technology, Bangkok.
ESA (European Space Agency), 2000. ESA Earth Observation Missions, Retrieved January 26, 2018, from https://earth.esa.int/web/guest/missions.
ESA (European Space Agency), 2013. Sentinel-1 User Guides, Retrieved January 1, 2018, from https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/acquisition-modes.
ESA-Sentinel Online, 2002. Level-1 SLC Products, Retrieved February 22, 2017, from https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-1-sar/products-algorithms/level-1-algorithms/single-look-complex.
Eshqi, M. Y., Kim, J., Lu, Z., Agram, P, 2018. L-Band Temporal Coherence Assessment and Modeling Using Amplitude and Snow Depth over Interior Alaska. Remote Sensing, 10(1), pp. 150. doi: 10.3390/rs10010150.
Evans, D., 2006. Spaceborne imaging radar-C/X-band synthetic aperture radar (SIR-C/X-SAR): a look back on the tenth anniversary. IEE Proceedings - Radar, Sonar And Navigation, 153(2), pp. 81, doi:10.1049/ip-rsn:20045095.
Forster, R., 2006. Land subsidence in southwest Utah from 1993 to 1998 measured with interferometric synthetic aperture radar (InSAR). Salt Lake City, Utah: Utah Geological Survey.
Fouladi, M. N., Rudiger, C., Samsonov, S. V., Hall, M., Walker, J. P., Camporese, M., 2013. An Assessment of DInSAR Potential for Simulating Geological Subsurface Structure. 20th International Congress on Modeling and Simulation, Australia.
Giao P.H., 1997. Artificial recharge of Bangkok Aquifer system for mitigation of land subsidence, Doctoral Dissertation No. GE/96-2, Asian Institute of Technology, Bangkok.
GIS Geography, 2017. Learn Synthetic Aperture Radar (SAR) by Example, Retrieved 25 April 2018, from https://gisgeography.com/synthetic-aperture-radar-examples.
Goldstein, R., Zebker, H., Werner, C., 1988. Satellite radar interferometry: Two-dimensional phase unwrapping. Radio Science, 23(4), pp.713-720. http://dx.doi.org/10.1029/rs023i004p00713.
Graham, L.C., 1974. Synthetic interferometer radar for topographic mapping. Proc IEEE 62(6), pp. 763–768.
Gupta, P., 2018. Remote Sensing Geology. 3rd ed. Germany.
Haghighi, M.H., Motagh, M., 2017. Sentinel-1 InSAR over Germany: Large-Scale Interferometry, Atmospheric Effects, and Ground Deformation Mapping. Haghshenas Haghighi/Motagh, Sentinel-1 InSAR over Germany, doi:10.12902/zfv-0174-2017.
Hanssen, R.F., 2001. Radar Interferometry: Data Interpretation and Error Analysis, Dordrecht, Boston, doi.org/10.1007/0-306-47633-9.
Hooper, A., Wright, T.J., 2007. Comparison of Monte Carlo methods for model probability distribution determination in SAR interferometry. Proceedings Fringe Workshop 2010. Frascati2010, Italy.
Huang, L., Liu, B., Li, X., Zhang, Z., Yu, W., 2017. Technical Evaluation of Sentinel-1 IW Mode Cross-Pol Radar Backscattering from the Ocean Surface in Moderate Wind Condition. Remote Sensing, 9(8), pp. 854. doi: 10.3390/rs9080854.
Integrated publishing, 2001. Engineering aid3-Beginning structural engineering guidebook, Retrieved 21 April 2018, from http://engineeringtraining.tpub.com/14069/css/Leveling-Head-Assembly 368.htm.
Ishitsuka, K., Fukushima, Y., Tsuji, T., Yamada, Y., Matsuoka, T., Giao, P., 2014. Natural
surface rebound of the Bangkok plain and aquifer characterization by persistent scatterer interferometry. Geochemistry, Geophysics, Geosystems, 15(4), pp. 965-974. doi: 10.1002/2013gc005154.
Japan International Cooperation Agency (JICA), 1995. The study on management of groundwater and land subsidence in the Bangkok metropolitan area and its vicinity, Report submitted to Department of Mineral Resources and Public Works Department, Kingdom of Thailand, pp. 1-1-11-5.
Jebur, M., Pradhan, B., Tehrany, M., 2013. Using ALOS PALSAR derived high-resolution DInSAR to detect slow-moving landslides in tropical forest: Cameron Highlands, Malaysia. Geomatics, Natural Hazards and Risk, 6(8), pp.741-759. http://dx.doi.org/10.1080/19475705.2013.860407.
Jung, J., Kim, D., Lavalle, M., Yun, S., 2016. Coherent Change Detection Using InSAR Temporal Decorrelation Model: A Case Study for Volcanic Ash Detection. IEEE Transactions On Geoscience And Remote Sensing, 54(10), pp. 5765-5775. doi: 10.1109/tgrs.2016.2572166.
Kataoka, Y., 2010. Water Resource Management in Asian Cities – Case Studies of
Groundwater Management. Sustainability in Food and Water, pp.19-27, doi: 10.1007/978-90-481-9914-3_3.
Kasetsart University, 2004. Effect of groundwater over-pumping mitigation: Mathematical model study. Final project report. Submitted to the Department of
Groundwater Resources. Bangkok: Kasetsart University.
Klongvessa, P., Chotpantarat, S., 2014. Thailand. Arabian Journal of Geosciences. 8 (6), pp. 4207-4219. doi: 10.1007/s12517-014-1438-3.
Li, F., Goldstein, R.M., 1987. Studies of multi-baseline Spaceborne interferometric Synthetic Aperture Radars. In International Geoscience and Remote Sensing Symposium. Ann Arbor, 18-21 May 1987.
Li, F., Goldstein, R.M., 1990. Studies of multi-baseline spaceborne interferometric Synthetic Aperture Radars. IEEE Transactions on Geoscience and Remote Sensing, 28(1), pp. 88–97.
Liu Z., Bian Z., Lei S., Liu D., Sowter A., 2014, Evaluation of PS-DInSAR technology for subsidence monitoring caused by repeated mining in mountainous area. Transactions of Nonferrous Metals Society of China. 24(10), pp. 3309-3315. doi:10.1016/s1003-6326(14)63471-3.
Li, Z., Ding, X., Zhu, J., Zou, Z., 2005. Quantitative study of atmospheric effects in spaceborne InSAR measurements. Journal of Central South University of Technology, 12(4), pp. 494-498. doi: 10.1007/s11771-005-0189-4.
Long, X., Yu, Q., Fu, S., Qi, B., Ren, G., 2014. Adaptive contoured correlation interferometry and its application to differential synthetic aperture radar interferometry. Journal of Applied Remote Sensing, 8(1), 083513. http://dx.doi.org/10.1117/1.jrs.8.083513.
Mangla, R., Kumar, S., 2014. DEM Construction using DInSAR. ISPRS - International Archives of The Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-8, pp.817-820. http://dx.doi.org/10.5194/isprsarchives-xl-8-817-2014.
Martinez, N., Iraola, P., Gonzalez, F., Brcic, R., Shau, R., Geudtner, D. et al., 2016. Interferometric Processing of Sentinel-1 TOPS Data. IEEE Transactions on Geoscience and Remote Sensing, 54(4), pp. 2220-2234, doi: 10.1109/tgrs.2015.2497902.
Marbouti, M., Praks, J., Antropov, O., Rinne, E., Lepparanta, M., 2017. A Study of Landfast Ice with Sentinel-1 Repeat-Pass Interferometry over the Baltic Sea. Remote Sensing, 9(8), pp. 833, doi:10.3390/rs9080833.
Massonnet, D., Briole, P., Arnaud, A., 1995. Deflation of Mount Etna monitored by spaceborne radarinterferometry. Nature, 375(6532), pp. 567-570. doi:10.1038/375567a0.
Massonnet, D., Feigl, K., 1998. Radar interferometry and its application to changes in the Earth′s surface. Reviews of Geophysics, 36(4), pp. 441-500. doi:10.1029/97rg03139.
Massonnet, D., Feigl, K., Rossi, M., Adragna, F., 1994. Radar interferometric mapping of deformation in the year after the Landers earthquake. Nature, 369(6477), pp. 227-230, doi:10.1038/369227a0.
Mccracken, J., & Abaza, H., 2014. Economic Instruments for Environmental Management. Hoboken: Taylor and Francis.
Moreira, A., Prats-Iraola, P., Younis, M., Krieger, G., Hajnsek, I., Papathanassiou, K., 2013. A tutorial on synthetic aperture radar. IEEE Geoscience and Remote Sensing Magazine, 1(1), pp. 6-43, doi:10.1109/mgrs.2013.2248301.
Murakami, M., Tobita, M., Fujiwara, S., Saito, T., Masaharu, H., 1996. Coseismic crustal
deformations of 1994 Northridge, California, earthquake detected by interferometric JERS 1 synthetic aperture radar. Journal of Geophysical Research: Solid Earth, 101(B4), pp. 8605-8614. doi: 10.1029/95jb02912.
Nagler, T., Rott, H., Ripper, E., Bippus, G., Hetzenecker, M., 2016. Advancements for Snowmelt Monitoring by Means of Sentinel-1 SAR. Remote Sensing, Vol. 8(12), pp.348.
Nasa, 2018. Mission to earth: Seasat, Retrieved 23 April 2018, from https://www.jpl.nasa.gov/missions/seasat.
Negri M. P., 2009, Fossil Mollusc-Faunas: The Bearing on the Holocene Evoluation of the Lower Central Plain of Bangkok (Thailand), Journal of Asian Earth Sciences, Vol. 35, pp. 524-544.
Nutalaya, P., Chandra, S., Balasubramaniam, A., 1988. Subsidence of Bangkok Clay due to deep well pumping and its control through artificial recharge. International Journal of Rock Mechanics And Mining Sciences & Geomechanics Abstracts, 25(3), pp.153. doi:10.1016/0148-9062(88)92699-x.
Nutalaya, P., Yong, R. N., Chumnankit, T., Buapeng, S., 1996. Land Subsidence in Bangkok during 1978-1988. Coastal Systems and Continental Margins Sea-Level Rise and Coastal Subsidence, pp. 105-130, doi: 10.1007/978-94-015-8719-8_6.
Le, T., Chang, C., Nguyen, X., Yhokha, A. 2016. TerraSAR-X Data for High-Precision Land Subsidence Monitoring: A Case Study in the Historical Centre of Hanoi, Vietnam. Remote Sensing, 8(4), 338, doi: 10.3390/rs8040338.
Jarosz, A., Zahiri, H., 2008. Interferometric synthetic aperture radar (InSAR) and its potential to monitor subsidence over caving zones induced by underground mining. Future Mining Conf. & Exhibition 2008, pp. 143-149.
Ojijk, D., Kenselaar, F., Hanssen, R., 2003. Integration of leveling and InSAR data for land subsidence monitoring. FIG International Symposium on Deformation Measurements 11th, Santorini, Greece, 23–28 May 2003, pp. 8.
Phetthewi, S., 2017. Subsidence near Ratchayothin road, Retrieved 22 May 2018, from http://www.nationtv.tv/main/content/378549817/.
Phien-wej, N., Giao, P., Nutalaya, P, 2006. Land subsidence in Bangkok, Thailand. Engineering Geology, 82(4), pp.187-201.
Phodee, P., Trisirisatayawong, I., Aobpaet, A., 2015. Coseismic and Postseismic Displacement of 2011 Mw 6.8 Tarlay Earthquake, Myanmar using InSAR Techniques and Inversion Analysis. Engineering Journal. 19 (2), pp.157-169. doi: 10.4186/ej.2015.19.2.157.
Piromthong, P., Aobpaet, A., Trisirisatayawong, I., 2015. Detection of 1996- 2000 rates
and trend of land subsidence in Greater Bangkok by InSAR time-series analysis. The 20th National Convention on Civil.
Pritchard, E. M., 2006. InSAR, a tool for measuring earth’s surface deformation, Retrieved 13 April 2018, from http://www.geo.cornell.edu/eas/PeoplePlaces/Faculty/matt/vol59no7p68_69.pdf.
Qin, Y., Perissin, D., Milillo, P., 2017. A new era of InSAR applications with Sentinel-1: A case study of severe ground subsidence in California central valley. IGARSS 2017.
Ral, Jon L., Nutalaya, P., 1983. Geology of Bangkok clay. Bulletin of the Geological Society of Malaysia. 16, pp. 99-116.
Rocca, 2007. Interferometry: Phase unwrapping, Retrieved February 24, 2017, from http://earth.esa.int/landtraining07/D1LB4-Rocca.pdf.
Rosen, P., Hensley, S., Zebker, H., Webb, F., Fielding, E., 1996. Surface deformation and coherence measurements of Kilauea Volcano, Hawaii, from SIR-C radar interferometry. Journal of Geophysical Research: Planets, 101(E10), pp. 23109-23125. doi: 10.1029/96je01459.
RTSD (Royal Thai Surveys Department), 2016. Report of the ground subsidence surveying in Bangkok and vicinity 2016, Report submitted to Royal Thai Surveys Department, Thailand.
RussianSpaceWeb, 2018. Spacecraft: Almaz-T, Retrieved 26 April 2018, from http://www.russianspaceweb.com/almazt.html.
Sabuncu, A., Ozener, H., 2013. Monitoring vertical displacements by precise leveling: a case study along the Tuzla Fault, Izmir, Turkey. Geomatics, Natural Hazards and Risk, 5(4), pp. 320-333. doi:10.1080/19475705.2013.810179.
Satirapod, C., Trisirisatayawong, I., Fleitout, L., Garaud, J., Simons, W., 2013. Vertical motions in Thailand after the 2004 Sumatra–Andaman Earthquake from GPS observations and its geophysical modelling. Advances in Space Research, 51(8), pp. 1565-1571. doi: 10.1016/j.asr.2012.04.030.
Sarmap, 2015. GCP manual, Retrieved March 10, 2017, from http://www.sarmap.ch/tutorials/GCP_Manual.pdf.
Sheng, Y., Wang, Y., Ge, L., Rizos, C., 2009. Differential RADAR interferometry and its application in monitoring underground coal mining-induced subsidence. Proceedings of ISPRS GSEM 2009, 38, pp. 227-232.
Siegmund, R., Bao, M., Lehner, S., Mayerle, R., 2004. First Demonstration of Surface Currents Imaged by Hybrid Along- and Cross-Track Interferometric SAR. IEEE Transactions on Geoscience and Remote Sensing, 42(3), pp. 511- 519, doi:10.1109/tgrs.2003.817816.
Sinsakul, S., 2000. Late Quaternary geology of the Lower Central Plain, Thailand. Journal of Asian Earth Sciences, 18(4), pp. 415-426, doi:10.1016/s1367-9120(99)00075-9.
Sowter, A., Bin Che Amat, M., Cigna, F., Marsh, S., Athab, A., Alshammari, L., 2016. Mexico City land subsidence in 2014–2015 with Sentinel-1 IW TOPS: Results using the Intermittent SBAS (ISBAS) technique. International Journal of Applied Earth Observation and Geoinformation, 52, pp. 230-242. doi: 10.1016/j.jag.2016.06.015.
Strozzi, T., Wegmuller, U., 1999. Land subsidence in Mexico City mapped by ERS differential SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing 5, doi: 10.1109/IGARSS.1999.774993.
Suzuki, T., 1991. Recent trend of land subsidence and government response in the cities of
Asia. Master thesis gt-90-27, School of Civil Engineering, Asian Institute of Technology, Bangkok, Thailand.
Tamm, T., Zalite, K., Voormansik, K., Talgre, L., 2016. Relating Sentinel-1 Interferometric
Coherence to Mowing Events on Grasslands. Remote Sensing, 8(10), pp. 802. doi: 10.3390/rs8100802.
Thai Meteorological Department, 2017. Agrometeorological Report, Retrieved 25 November 2017, from https://www.tmd.go.th/en/province.php?.
Thammakumpee, K., 1978, Instrumentation for the Measurement of Subsidence in Bangkok, M. Eng. Thesis No. 1298, AIT, Bangkok.
Tomas, R. M., Cano, J., Garcia-Barba, F., Vicente, G., Herrera, J.M., Lopez-Sanchez, J.J., Mallorqui., 2013. Monitoring an Earthfill Dam Using Differential SAR Interferometry: La Pedrera Dam, Alicante, Spain. Engineering Geology 157, pp.21-32. doi: 10.1016/j.enggeo.2013.01.022.
Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E. et al., 2012. GMES Sentinel-1 mission. Remote Sensing of Environment, 120, pp. 9-24, doi: 10.1016/j.rse.2011.05.028.
Urbanalyse, 2012. InSAR, Urban growth in Bangkok, Retrieved 20 April 2018, from https://urbanalyse.com/research/growing-bangkok/.
USGS, 2016. Land Subsidence, Retrieved July 29, 2017, from https://water.usgs.gov/edu/earthgwlandsubside.html.
Vai, H., 1983, SIR-A: A shuttle imaging radar strip over south Thailand and northeast peninsular Malaysia, Workshop on stratigraphic correlation of Thailand and Malaysia, Bangkok, Thailand.
Werner, M., 2001. Shuttle Radar Topography Mission (SRTM) Mission Overview. Frequenz, 55(3-4), doi:10.1515/freq.2001.55.3-4.75.
West, D.R., 2011. Model based Stripmap synthetic aperture radar processing, Doctoral Dissertation, Utah state university, Logan, Utah.
Wiley, C.A., 1954. Pulsed doppler radar methods and apparatus, United States Patent.
World Population Review, 2017. Bangkok Population 2017, Retrieved July 29, 2017, from http://worldpopulationreview.com/world-cities/bangkok-population/.
Yang, Y., Pepe, A., 2015. Accurate DInSAR stack coherence estimation exploiting phase statistics.
IGARSS2015, pp. 286-289.
Yong, R.N., Nutalaya, P., Mohamed, A.M.O., 1991. Land subsidence and flooding in Bangkok. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 29(5), pp. 335, doi: 10.1016/0148-9062(92)93115-z.
Zebker, H.A., Goldstein, R.M., 1986. Topographic Mapping from Interferometric Synthetic Aperture Radar Observations, J.Geophys.Res., 91, pp.4993-4999.
Zebker, H., Villasenor, J., 1992. Decorrelation in interferometric radar echoes. IEEE Transactions on Geoscience and Remote Sensing, 30(5), 950-959. doi: 10.1109/36.175330.
Zeitoun, D. and Wakshal, E, 2013. Land Subsidence Analysis in Urban Areas. Dordrecht: Springer.
Zhou, X., Chang, N., Li, S., 2009. Applications of SAR Interferometry in Earth and Environmental Science Research. Sensors, 9(3), pp. 1876-1912. doi:10.3390/s90301876.
指導教授 姜壽浩(Shou-Hao Chiang) 審核日期 2018-8-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明