以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:96 、訪客IP:3.147.47.177
姓名 艾琳娜(Eleanor S. Austria) 查詢紙本館藏 畢業系所 國際研究生博士學位學程 論文名稱 亞熱帶水庫漂浮性及附著性異營細菌的生 產力、豐度、與單位生長率之動態與調控
(DYNAMICS AND CONTROLS OF FREE-LIVING AND ATTACHED HETEROTROPHIC BACTERIAL PRODUCTION, ABUNDANCE AND SPECIFIC GROWTH RATES IN A SUBTROPICAL RESERVOIR)檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 摘要
在一個營養鹽限制的亞熱帶淡水系統11年研究中,漂浮性與附著性異營細菌生產力、細菌豐度與個體生長率的動態變化受到溫度與營養供應物質變化的影響。溫度有顯著正面影響細菌生產力在特別的時空尺度上(每小時,季節性,年間,與十年間週期),但影響程度亦受到營養物質供應的修正。在氣溫逐漸變暖和變冷的季節裡,漂浮性與附著性細菌兩者對於溫度的反應不同,暖季時漂浮性細菌生產力會減緩對於溫度反應程度,實驗室的操控實驗結果顯示了這可能是受到來自碳、氮、磷等基礎物質供應的個別或共同限制。此外,細菌生產力的時間變化上顯示了極端氣候會影響漂浮性與附著性細菌的動態,因為來自強烈颱風的強降雨改變了顆粒態有機物質與磷酸鹽的分布,且附著性細菌受益於此要比漂浮性來的多。前人的研究顯示了兩種不同生活型態的細菌對於有機物質的利用有不同的方式,且對於環境控制因子的反應也有所不同,故附著性細菌在此狀況下可能佔有總細菌生產力的主要地位。這在對於評估有機物質的微生物處理過程產生重要的影響。
關鍵字: 異營性細菌, 營養鹽限制, 颱風, 顆粒態有機碳, 實驗室操控實驗, 漂浮性細菌與附著性細菌摘要(英) An 11- year investigation of the free-living and attached bacterial production, abundance and specific growth rates in a mineral-limited, subtropical freshwater system revealed large variability in the dynamics that is influenced by temperature and substrate availability. Temperature has a significant positive effect on bacterial production at several spatial and temporal (hours, seasonal, interannual and decadal) scales; but the effect is modified by the availability of substrate. Free-living and attached
bacteria showed dissimilar response to temperature shifts (increasing and decreasing temperature) with a decline in free-living BP during the warmest months. This may be
brought about by the limitation and co-limitation with carbon, nitrogen and phosphates that was confirmed during the laboratory manipulation experiments. In addition to thehourly, seasonal, interannual and decadal controls of bacterial production, it was also revealed that episodic events can influence the dynamics of free-living and attached bacteria. Heavy precipitation from strong typhoons caused changes in the dynamics of
particulate organic compounds and phosphate which benefitted the attached more than the free-living bacteria. The previously reported dissimilar abilities of the two bacterial lifestyles to process organic matter and the observed dissimilar response to
environmental controls showed how the attached bacteria can dominate the total production. This can have important consequences on the assessment of microbial
processing of organic matter.關鍵字(中) ★ 異營性細菌
★ 營養鹽限制
★ 颱風
★ 顆粒態有機碳
★ 實驗室操控實驗
★ 漂浮性細菌與附著性細菌關鍵字(英) ★ heterotrophic bacteria
★ mineral-limited
★ typhoon
★ POC
★ free-living and attached bacteria
★ laboratory manipulation論文目次 Table of Contents
Chapter 1: Introduction........... 1
Chapter 2. Multi-scale variability of free-living and attached bacterial production, abundance and turnover rates in a subtropical freshwater system 7
2.1. Introduction 7
2.2. Methodology. 9
2.2.1. Study area and sampling methodology 9
2.2.2 Laboratory analysis of environmental parameters... 9
2.2.3 Laboratory analysis of bacterial variables.... 10
2.2.4. Data processing and statistical analysis.. 11
2.3. Results.... 13
2.3.1. Environmental conditions in the study area 13
2.3.2. Spatial and seasonal profile of environmental variables.. 14
2.3.3. Spatial variability in the dynamics and control of free-living and attached bacteria 16
2.3.4. Interannual variability in environmental and bacterial variables. 22
2.3.5. Seasonal control of free-living and attached bacteria.. 27
2.4. Discussion... 35
2.4.1. Dynamics and controls of bacteria abundance..... 36
2.4.2. Influence of temperature on attached bacteria 37
2.5. References...... 39
Chapter 3: Response of free-living and attached bacteria to temperature shifts (increasing and decreasing temperature) in a subtropical freshwater system 42
3.1. Introduction...... 43
3.2. Methodology.... 45
3.3. Results 45
3.3.1. Environmental variables and bacterial dynamics during shift up and shift down. 45
3.3.2. Effect of temperature shifts and substrate supply on bacterial variables 50
3.4. Discussion..... 54
3.4.1. Temperature control of attached activity rates 54
3.5. Conclusion 57
3.6. References 59
Chapter 4: Effects of temperature manipulation and nutrient enrichment on bacterial production and specific growth rates in laboratory 61
4.1. Introduction.. 62
4.2. Methodology 62
4.2.1. Study area and field measurements... 62
4.2.2. Temperature manipulation experiments 63
4.2.3. Nutrient enrichment experiments. 64
4.2.4. Temperature-nutrient interaction experiments 65
4.2.5. Laboratory analyses. 65
4.2.6. Statistical and Data analyses.. 66
4.3. Results.. 68
4.3.1. Temperature manipulation experiments (TME). 68
4.3.2. Results of nutrient enrichment experiment (NEE). 72
4.3.3. Results of the combined TME-NEE 83
4.4. Discussion. 84
4.5. Conclusion 88
4.6. References. 89
Chapter 5: The impacts of extreme weather events on the dynamics of the attached and free-living bacteria in a subtropical reservoir 90
5.1. Introduction 91
5.2. Methodology 94
5.2.1. Description of the study site.. 94
5.2.2. Typhoon period in the study area 95
5.2.3. Sampling 95
5.2.4. Laboratory analysis of environmental variables 96
5.2.5. Laboratory analysis of bacterial variables 96
5.2.6. Data handling and statistical analysis. 97
5.3. Results... 98
5.3.1. Environmental conditions during the typhoon period 99
5.3.2 Bacterial dynamics during strong and weak typhoon period.. 101
5.4. Discussion.... 103
5.4.1. Consequences of increasing typhoon intensity and increased attached bacterial activity....103
5.5. References. 107
Chapter 6: Conclusions .....110參考文獻 REFERENCES
Adams, H. E., Crump, B. C., & Kling, G. W. (2015). Isolating the effects of storm events on arctic aquatic bacteria: temperature, nutrients, and community composition as controls on bacterial productivity. Frontiers in Microbiology, 6.
Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyerreil, L. A., & Thingstad, F. (1983). THE ECOLOGICAL ROLE OF WATER-COLUMN MICROBES IN THE SEA. Marine Ecology Progress Series, 10(3), 257-263. doi:10.3354/meps010257
Biddanda, B., Opsahl, S., & Benner, R. (1994). Plankton Respiration and Carbon Flux through Bacterioplankton on the Louisiana Shelf. Limnology and Oceanography, 39(6), 1259-1275.
Cole, J. J., Findlay, S., & Pace, M. L. (1988). BACTERIAL PRODUCTION IN FRESH AND SALTWATER ECOSYSTEMS - A CROSS-SYSTEM OVERVIEW. Marine Ecology Progress Series, 43(1-2), 1-10. doi:10.3354/meps043001
Ghiglione, J. F., Mevel, G., Pujo-Pay, M., Mousseau, L., Lebaron, P., & Goutx, M. (2007). Diel and seasonal variations in abundance, activity, and community structure of particle-attached and free-living bacteria in NW Mediterranean Sea. Microbial Ecology, 54(2), 217-231. doi:10.1007/s00248-006-9189-7
Griffith, P., Shiah, F. K., Gloersen, K., Ducklow, H. W., & Fletcher, M. (1994). Activity and Distribution of Attached Bacteria in Chesapeake Bay. Marine Ecology Progress Series, 108(1-2), 1-10.
Grossart, H. P. (2010). Ecological consequences of bacterioplankton lifestyles: changes in concepts are needed. Environmental Microbiology Reports, 2(6), 706-714. doi:10.1111/j.1758-2229.2010.00179.x
Pomeroy, L. R. (1974). Oceans Food Web, a Changing Paradigm Bioscience (Vol. 24, pp. 499-504).
Pomeroy, L. R., & Wiebe, W. J. (2001). Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquatic Microbial Ecology, 23(2), 187-204. doi:10.3354/ame023187
Rivkin, R. B., Anderson, M. R., & Lajzerowicz, C. (1996). Microbial processes in cold oceans .1. Relationship between temperature and bacterial growth rate. Aquatic Microbial Ecology, 10(3), 243-254. doi:10.3354/ame010243
Shiah, F. K., & Ducklow, H. W. (1994). TEMPERATURE AND SUBSTRATE REGULATION OF BACTERIAL ABUNDANCE, PRODUCTION AND SPECIFIC GROWTH-RATE IN CHESAPEAKE BAY, USA. Marine Ecology Progress Series, 103(3), 297-308.
Simon, M., Grossart, H. P., Schweitzer, B., & Ploug, H. (2002). Microbial ecology of organic aggregates in aquatic ecosystems. Aquatic Microbial Ecology, 28(2), 175-211. doi:10.3354/ame028175
Tseng, Y. F., Hsu, T. C., Chen, Y. L., Kao, S. J., Wu, J. T., Lu, J. C., . . . Shiah, F. K. (2010). Typhoon effects on DOC dynamics in a phosphate-limited reservoir. Aquatic Microbial Ecology, 60(3), 247-260. doi:10.3354/ame01423
Unanue, M., Ayo, B., Azua, I., Barcina, I., & Iriberri, J. (1992). TEMPORAL VARIABILITY OF ATTACHED AND FREE-LIVING BACTERIA IN COASTAL WATERS. Microbial Ecology, 23(1), 27-39. doi:10.1007/bf00165905
White, P. A., Kalff, J., Rasmussen, J. B., & Gasol, J. M. (1991). THE EFFECT OF TEMPERATURE AND ALGAL BIOMASS ON BACTERIAL PRODUCTION AND SPECIFIC GROWTH-RATE IN FRESH-WATER AND MARINE HABITATS. Microbial Ecology, 21(2), 99-118. doi:10.1007/bf02539147指導教授 夏復國 林殿順(Fuh-Kwo Shiah Andrew Lin) 審核日期 2018-6-26 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare