參考文獻 |
[1] Alex, G., Douglas, H. J., and William, E. S. (2006). Portfolio selection using hierarchical Bayesian analysis and MCMC methods. Journal of Banking and Finance, 30,669–678.
[2] Andr´e, L. and Pieter, K. (1998). Extreme returns, downside risk, and optimal asset allocation. Journal of Portfolio Management , 25, 71–79.
[3] Andreson, S., de Palma, A., and Thisse, J. F. (1992). Discrete choice theory of product differentiation. MIT Press.
[4] Bawa, V., Brown, S., and Klein, R. (1979). Estimate risk and optimal portfolio choice, New York: North-Holland.
[5] Berger, J. O. (1985). Statistical decision theory and Bayesian analysis, 2nd Ed., New York: Springer-Verlag.
[6] Board, J. and Sutcliffe, C. (1992). Estimation methods in portfolio selection and the effectiveness of short sales restrictions: U.K. evidence. Management Science, 39,
11–31.
[7] Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307–327.
[8] Bollerslev, T. (1988). On the correlation structure for the generalized autoregressive conditional heteroskedastic process. Journal of TimeSeries Analysis, 9, 121–131.
[9] Bollerslev, T., Chou, R. Y., and Kroner, K. F. (1992). ARCH modeling in finance: A review of the theory and empirical evdience. Journal of Econometrics, 52, 5–59.
[10] Brown, S. (1976). Optimal portfolio choice under uncertainty: A Bayesian approach. University of Chicago.
[11] Casella, G. (1985). An introduction to empirical Bayes data analysis. The American Statistician, 39, 83–87.
[12] Chang, Y. P., Hung, M. C., and Wu, Y. F. (2003). Nonparametric estimation for risk in value-at-risk estimator. Communications in Statistics: Simulation and Computation, 32, 1041–1064.
[13] Dickinson, J. (1974). The reliability of estimation procedures in portfolio analysis. Journal of Financial and Quantitative Analysis, 9, 447–462.
[14] Efron, B. and Morris, C. (1971). Limiting the risk of Bayes and empirical Bayes estimator-part I: The Bayes case. Journal of the American Statistical Association, 66, 807–815.
[15] Efron, B. and Morris, C. (1972a). Limiting the risk of Bayes and empirical Bayes estimator-part II: The empirical Bayes case. Journal of the American Statistical Association, 67, 130–139.
[16] Efron, B. and Morris, C. (1972b). Empirical Bayes on vector observations: An extension of Stein’s method. Biometrika, 59, 335–347.
[17] Efron, B. and Morris, C. (1973). Stein’s estimations rule and its competitors: An empirical Bayes approach. Journal of the American Statistical Association, 68, 117-130.
[18] Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation. Econometrica, 50, 987–1008.
[19] Gill, P. E., Murray, W., and Wright, M. H. (1981). Practical optimization, New York: Academic Press.
[20] Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. On Pattern Analysis and Machine Intelligence, 6, 721–741.
[21] Hastings, W. K. (1970). Monte carlo sampling methods using markov chains and their applications. Biometrika, 57, 97–109.
[22] James, W. and Stein, C. (1960). Estimation with quadratic loss. Prob. Fourth Berkeley Symp. Math. Statist.Probab., 1, 361–380.
[23] Jorion, P. (1986). Bayes-Stein estimation for portfolio analysis. Journal of Financial and Quantitative Analysis, 21, 279–291.
[24] Jorion, P. (1991). Bayesian and CAPM estimators of the means: Implications for portfolio selection. Journal of Banking and Financial , 10, 717–727.
[25] Jorion, P. (1997). Value at risk: The new benchmark for controlling market risk, New York: McGraw-Hill.
[26] Kadiyala, K. R. and Karlsson, S. (1997). Numerical methods for estimation and inference in Bayesian VAR-models. Journal of Applied Econometrics, 12, 99–132.
[27] Levy, H. and Sarnat, M. (1979). Approximating expected utility by a function of mean and variance. American Economic Review, 69, 308–317.
[28] Levy, H. and Markowitz, H. (1979). Approximating expected utility by a function of mean and variance. American Economic Review, 69, 308–317.
[29] Liu, J. C. (2000). Estimation and testing for the multivariate GARCH model. Acta Scientiarum Naturalium Universitatis Jilinensis, 4, 37–40.
[30] Mandelbrot, B. B. (1963). The variation of certain speculative prices. Journal of Business, 36, 394–419.
[31] Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7, 77–91.
[32] Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E. (1953). Equations of state calculations by fast computing machines. Journal of Chemical Physics, 21, 1087–1092.
[33] Morris, C. N. (1983a). Parametric empirical Bayes inference: Theory and applications. Journal of the American Statistical Association, 78, 47–65.
[34] Morris, C. N. (1983b). Natural exponential families with quadratic variance functions: Statistical theory. Annals of Statistics, 11, 515–529.
[35] Nicholas, G. P. and Bernard, V. T. (2000). Bayesian portfolio selection: An empirical analysis of the S&P 500 Index 1970-1996. Journal of Business and Economic Statistics, 18, 164–173.
[36] Pari, A. and Chen, S. (1985). Estimation risk and optimal portfolios. Journal of Portfolio Management , 12, 120–130.
[37] Putnam, B. and Quintana, J. (1991). Mean-variance optimal portfolio models and the inappropriateness of the assumption of a time-stable variance-covariance matrix. Review of Financial Economics, 1, 1–22.
[38] Rachel, A. J., Huisman, R., and Koedijk, C. G. (2001). Optimal portfolio selection in a value-at-risk framework. Journal of Banking and Finance, 25, 1789–1804.
[39] Refik, S. and Kadir, T. (2006). Bayesian portfolio selection with multi-variate random variance models. European Journal of Operational Research, 171, 977–990.
[40] Rider, T. (1997). Basic of statistical VaR-estimation. Risk Measurement, Econometrics and Neural Networks. Heidelberg: Physica-Verlag., pp. 161–187.
[41] Robbins, H. (1995). Optimal portfolio selection in a value-at-risk framework. Proc. 3rd Berkeley Symp. Math. Statist , 1, 157–164.
[42] Robert, C. P., Godsill, J. A., and Doucet, A. (2002). Marginal maximum a posteriori estimation using Markov chain Monte Carlo. Statistics and Computing, 12, 77–84.
[43] Rombouts, J. V. K. and Verbeek, M. (2005). Evaluating portfolio value-at-risk using semi-parametric GARCH models. Computing in Economics and Finance, 40, 1033–1043.
[44] Ross, S. (2006). Simulation 4th Ed., Academic Press.
[45] Saha, A. (1993). Expo-power utility: A ’flexible’ form for absolute and relative risk aversion. American Journal of Agricultural Economics, 75, 905–913.
[46] Savarino, J. E. and Frost, P. A. (1986). An empirical Bayes approach to efficient portfolio selection. Journal of Financial and Quantitative Analysis, 21, 293–305.
[47] Schittowski, K. (1980). Nonlinear programming codes, New York: Springer-Verlag.
[48] Schittowski, K. (1985). NLQPL: A FORTRAN subroutine solving constrained nonlinear programming problems. Annals of Operations Research, 5, 458–500.
[49] Solink, B. (1982). Optimal international asset allocation. Journal of Portfolio Management , 9, 11–21.
[50] Tsay, R. S. (2005). Analysis of financial time series, 2nd Ed., Wiley-Interscience.
[51] Von Neumann, J. and Morgenstern, O. (1944). Theory of games and economic behavior , Princeton University Press.
|