博碩士論文 962205008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.135.184.195
姓名 林琬真(Wan-chen Lin)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 在多維常態、自我迴歸、自我迴歸-廣義自我迴歸條件異質變異模型下幾種貝氏最佳投資組合之探討
相關論文
★ 具Box-Cox轉換之逐步加速壽命實驗的指數推論模型★ 多元反應變數長期資料之多變量線性混合模型
★ 多重型 I 設限下串聯系統之可靠度分析與最佳化設計★ 應用累積暴露模式至單調過程之加速衰變模型
★ 串聯系統加速壽命試驗之最佳樣本數配置★ 破壞性加速衰變試驗之適合度檢定
★ 串聯系統加速壽命試驗之最佳妥協設計★ 加速破壞性衰變模型之貝氏適合度檢定
★ 加速破壞性衰變模型之最佳實驗配置★ 累積暴露模式之單調加速衰變試驗
★ 具ED過程之兩因子加速衰退試驗建模研究★ 逆高斯過程之完整貝氏衰變分析
★ 加速不變原則之偏斜-t過程★ 花蓮地區地震資料改變點之貝氏模型選擇
★ 颱風降雨量之統計迴歸預測★ 花蓮地區地震資料之長時期相關性及時間-空間模型之可行性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,由於經濟市場的快速成長以及各國經濟趨向穩定,投資變成是越來越多人的理財工具,因此「如何對各種產業進行搭配以賺取更多的利益」越來越受到人民的重視。本篇論文乃是探討如何應用預測分配之期望值與共變異矩陣、期望效用函數的最大值以及風險值找出最佳投資比例。%由三個法則探討如何找出最佳投資組合並加以比較,分別是由 Markowitz (1952) 所提出的利用預測分配之期望值與變異數 (MV)dd 利用期望效用函數的最大值 (DU) 以及由風險值 (VaR) 來找出其最佳的投資組合並以真實資料去加以模擬。
本文考慮不同產業的報酬率分別為獨立且同分配的多維常態模型,自我迴歸 (Autoregressiveff 簡稱 AR) 模型及廣義自我迴歸條件異質變異 (Generalized Autoregressive Conditional Heteroskedastical;簡稱 GARCH) 模型,以貝氏方法求各資產在 Markowitz 所提出的均值-變異數法則、期望效用函數法則以及風險值法則下個別之最佳投資組合,並以模擬資料對各模型的預測結果加以比較,結果顯示在 AR(1)-GARCH(1,1) 模型配適資料的情況下,會得到最多的獲利。
另外並以實例分析各模型下由各法則所得之最佳報酬,文中所述之 AR(1)-GARCH(1,1) 模型較多維常態模型及 AR(1) 模型更能表現各期資產報酬率的關聯性及波動性,因此由 AR(1)-GARCH(1,1) 模型進行配適可獲得最大的利益。
摘要(英) Recently, the rapid growth of economic markets and the stability of economic tendency make investment become a more and more common tool of personal financial management.
Therefore, it is important to think of how to work with an allocation of properties so as to earn more return. In this article, we consider three models for returns of investments, namely, identically independent normal model, autoregressive (AR) model, and generalized autoregressive conditional heteroskedastical (GARCH) model. We estimate
the parameters of each models through a Bayesian perspective, and then derive the best portfolio selection under the mean-variance, the direct-ultility, and the value-at-risk(VaR) criteria. A simulation study is done for comparing the prediction result of each models, and an empirical example is analyzed for the maximum return of each criteria under each model. As a result, the proposed AR(1)-GARCH(1,1) model can exhibit better correlation and volatility of property return of each period than the normal and AR(1) model.
關鍵字(中) ★ GARCH
★ 風險值
★ 效用函數
★ 均值-共變異數
★ 投資組合
關鍵字(英) ★ GARCH
★ value-at-risk
★ utility
★ mean-variance
★ portfolio
論文目次 Abstract...................................................i
摘要.......................................................ii
目錄......................................................iii
表目次...................................................v
誌謝......................................................vi
第一章 緒論...........................................1
1.1 研究背景及動機..............................1
1.2 研究目的及方法..............................3
1.3 研究架構..........................................7
第二章 統計模型與參數估計...............8
2.1 常態分配..........................................8
2.1.1 主觀貝氏.......................................9
2.1.2 經驗貝氏......................................10
2.1.3 James-Stein估計量........................12
2.1.4 階層式貝氏...................................12
2.2 AR模型.............................................14
2.3多維 AR-GARCH模型......................17
第三章 最佳投資組合...........................22
3.1 MV法則............................................22
3.1.1 M維常態模型................................24
3.1.2 M維AR(1)模型..............................24
3.1.3 M維AR(1)-GARCH(1,1)模型........25
3.2 DU法則............................................26
3.3 VaR法則...........................................29
第四章 統計模擬與實際資料分析.......32
4.1 模擬範例..........................................32
4.1.1模型配適與參數估計....................32
4.1.2 配適不同模型之預測結果...........36
4.1.3 投資組合.......................................38
4.2 實際資料分析與預測......................40
第五章 結論...........................................42
參考文獻................................................43
附錄 A. Metropolis-Hastings 演算法......49
參考文獻 [1] Alex, G., Douglas, H. J., and William, E. S. (2006). Portfolio selection using hierarchical Bayesian analysis and MCMC methods. Journal of Banking and Finance, 30,669–678.
[2] Andr´e, L. and Pieter, K. (1998). Extreme returns, downside risk, and optimal asset allocation. Journal of Portfolio Management , 25, 71–79.
[3] Andreson, S., de Palma, A., and Thisse, J. F. (1992). Discrete choice theory of product differentiation. MIT Press.
[4] Bawa, V., Brown, S., and Klein, R. (1979). Estimate risk and optimal portfolio choice, New York: North-Holland.
[5] Berger, J. O. (1985). Statistical decision theory and Bayesian analysis, 2nd Ed., New York: Springer-Verlag.
[6] Board, J. and Sutcliffe, C. (1992). Estimation methods in portfolio selection and the effectiveness of short sales restrictions: U.K. evidence. Management Science, 39,
11–31.
[7] Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307–327.
[8] Bollerslev, T. (1988). On the correlation structure for the generalized autoregressive conditional heteroskedastic process. Journal of TimeSeries Analysis, 9, 121–131.
[9] Bollerslev, T., Chou, R. Y., and Kroner, K. F. (1992). ARCH modeling in finance: A review of the theory and empirical evdience. Journal of Econometrics, 52, 5–59.
[10] Brown, S. (1976). Optimal portfolio choice under uncertainty: A Bayesian approach. University of Chicago.
[11] Casella, G. (1985). An introduction to empirical Bayes data analysis. The American Statistician, 39, 83–87.
[12] Chang, Y. P., Hung, M. C., and Wu, Y. F. (2003). Nonparametric estimation for risk in value-at-risk estimator. Communications in Statistics: Simulation and Computation, 32, 1041–1064.
[13] Dickinson, J. (1974). The reliability of estimation procedures in portfolio analysis. Journal of Financial and Quantitative Analysis, 9, 447–462.
[14] Efron, B. and Morris, C. (1971). Limiting the risk of Bayes and empirical Bayes estimator-part I: The Bayes case. Journal of the American Statistical Association, 66, 807–815.
[15] Efron, B. and Morris, C. (1972a). Limiting the risk of Bayes and empirical Bayes estimator-part II: The empirical Bayes case. Journal of the American Statistical Association, 67, 130–139.
[16] Efron, B. and Morris, C. (1972b). Empirical Bayes on vector observations: An extension of Stein’s method. Biometrika, 59, 335–347.
[17] Efron, B. and Morris, C. (1973). Stein’s estimations rule and its competitors: An empirical Bayes approach. Journal of the American Statistical Association, 68, 117-130.
[18] Engle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation. Econometrica, 50, 987–1008.
[19] Gill, P. E., Murray, W., and Wright, M. H. (1981). Practical optimization, New York: Academic Press.
[20] Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. On Pattern Analysis and Machine Intelligence, 6, 721–741.
[21] Hastings, W. K. (1970). Monte carlo sampling methods using markov chains and their applications. Biometrika, 57, 97–109.
[22] James, W. and Stein, C. (1960). Estimation with quadratic loss. Prob. Fourth Berkeley Symp. Math. Statist.Probab., 1, 361–380.
[23] Jorion, P. (1986). Bayes-Stein estimation for portfolio analysis. Journal of Financial and Quantitative Analysis, 21, 279–291.
[24] Jorion, P. (1991). Bayesian and CAPM estimators of the means: Implications for portfolio selection. Journal of Banking and Financial , 10, 717–727.
[25] Jorion, P. (1997). Value at risk: The new benchmark for controlling market risk, New York: McGraw-Hill.
[26] Kadiyala, K. R. and Karlsson, S. (1997). Numerical methods for estimation and inference in Bayesian VAR-models. Journal of Applied Econometrics, 12, 99–132.
[27] Levy, H. and Sarnat, M. (1979). Approximating expected utility by a function of mean and variance. American Economic Review, 69, 308–317.
[28] Levy, H. and Markowitz, H. (1979). Approximating expected utility by a function of mean and variance. American Economic Review, 69, 308–317.
[29] Liu, J. C. (2000). Estimation and testing for the multivariate GARCH model. Acta Scientiarum Naturalium Universitatis Jilinensis, 4, 37–40.
[30] Mandelbrot, B. B. (1963). The variation of certain speculative prices. Journal of Business, 36, 394–419.
[31] Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7, 77–91.
[32] Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E. (1953). Equations of state calculations by fast computing machines. Journal of Chemical Physics, 21, 1087–1092.
[33] Morris, C. N. (1983a). Parametric empirical Bayes inference: Theory and applications. Journal of the American Statistical Association, 78, 47–65.
[34] Morris, C. N. (1983b). Natural exponential families with quadratic variance functions: Statistical theory. Annals of Statistics, 11, 515–529.
[35] Nicholas, G. P. and Bernard, V. T. (2000). Bayesian portfolio selection: An empirical analysis of the S&P 500 Index 1970-1996. Journal of Business and Economic Statistics, 18, 164–173.
[36] Pari, A. and Chen, S. (1985). Estimation risk and optimal portfolios. Journal of Portfolio Management , 12, 120–130.
[37] Putnam, B. and Quintana, J. (1991). Mean-variance optimal portfolio models and the inappropriateness of the assumption of a time-stable variance-covariance matrix. Review of Financial Economics, 1, 1–22.
[38] Rachel, A. J., Huisman, R., and Koedijk, C. G. (2001). Optimal portfolio selection in a value-at-risk framework. Journal of Banking and Finance, 25, 1789–1804.
[39] Refik, S. and Kadir, T. (2006). Bayesian portfolio selection with multi-variate random variance models. European Journal of Operational Research, 171, 977–990.
[40] Rider, T. (1997). Basic of statistical VaR-estimation. Risk Measurement, Econometrics and Neural Networks. Heidelberg: Physica-Verlag., pp. 161–187.
[41] Robbins, H. (1995). Optimal portfolio selection in a value-at-risk framework. Proc. 3rd Berkeley Symp. Math. Statist , 1, 157–164.
[42] Robert, C. P., Godsill, J. A., and Doucet, A. (2002). Marginal maximum a posteriori estimation using Markov chain Monte Carlo. Statistics and Computing, 12, 77–84.
[43] Rombouts, J. V. K. and Verbeek, M. (2005). Evaluating portfolio value-at-risk using semi-parametric GARCH models. Computing in Economics and Finance, 40, 1033–1043.
[44] Ross, S. (2006). Simulation 4th Ed., Academic Press.
[45] Saha, A. (1993). Expo-power utility: A ’flexible’ form for absolute and relative risk aversion. American Journal of Agricultural Economics, 75, 905–913.
[46] Savarino, J. E. and Frost, P. A. (1986). An empirical Bayes approach to efficient portfolio selection. Journal of Financial and Quantitative Analysis, 21, 293–305.
[47] Schittowski, K. (1980). Nonlinear programming codes, New York: Springer-Verlag.
[48] Schittowski, K. (1985). NLQPL: A FORTRAN subroutine solving constrained nonlinear programming problems. Annals of Operations Research, 5, 458–500.
[49] Solink, B. (1982). Optimal international asset allocation. Journal of Portfolio Management , 9, 11–21.
[50] Tsay, R. S. (2005). Analysis of financial time series, 2nd Ed., Wiley-Interscience.
[51] Von Neumann, J. and Morgenstern, O. (1944). Theory of games and economic behavior , Princeton University Press.
指導教授 樊采虹(Tsai-hung Fan) 審核日期 2009-6-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明