博碩士論文 105225014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:114 、訪客IP:18.191.97.252
姓名 張雯婷(Wen-Ting Chang)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 加速失效模型與Cox風險迴歸模型之模型選擇以時間相依AUC及預測精準度為指標
相關論文
★ 長期與存活資料之聯合模型-新方法和數值方法的改進★ 復發事件存活分析的共享廣義伽瑪脆弱因子之半母數聯合模型
★ 加乘法風險模型結合長期追蹤資料之聯合模型★ 有序雙重事件時間分析使用與時間相關的共變數-邊際方法的比較
★ 存活與長期追蹤資料之聯合模型-台灣愛滋病實例研究★ 以聯合模型探討地中海果蠅繁殖力與老化之關係
★ 聯合模型在雞尾酒療法療效評估之應用—利用CD4/CD8比值探討台灣愛滋病資料★ 時間相依共變數之雙重存活時間分析—台灣愛滋病病患存活時間與 CD4 / CD8 比值關係之案例研究
★ Cox比例風險模型之參數估計─比較部分概似法與聯合模型★ 復發事件存活時間分析-丙型干擾素對慢性肉芽病患復發療效之案例研究
★ Cox 比例風險假設之探討與擴充風險模型之應用★ 以聯合模型探討原發性膽汁性肝硬化
★ 聯合長期追蹤與存活資料分析-肝硬化病患之實例研究★ 復發事件存活時間分析-rhDNase對囊狀纖維化病患復發療效之案例研究
★ 聯合長期追蹤與存活資料分析-原發性膽汁性肝硬化病患之實例研究★ 復發事件存活時間分析-Thiotepa對膀胱癌病患復發療效之案例研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 傳統上接受者作業特徵曲線(ROC)是針對二元的分類結果進行預測,然而存活資料為結合二元設限狀態及連續存活時間的資料型態,因此若將敏感度與特異度的定義經過適當的修改後,即可將接受者作業特徵曲線應用於存活資料上。在過去文獻中,已有學者將其推廣到時間獨立共變數下配適Cox比例風險模型,並結合時間相依敏感度與特異度預測精準度。然而在部分的醫學研究中,常有資料不符合比例風險假設,因此我們建議以參數化加速失效模型取代Cox比例風險模型,結合時間相依敏感度與特異度,並以接受者作業特徵曲線下面積(AUC)及一致性指標Concordance判斷生物指標對疾病的區別能力,亦進一步擴展此方法到含有長期追蹤共變數的資料上。
摘要(英) Traditionally, the receiver operating characteristic curve (ROC) are used to predict the binary classification results. However, survival data are data types that combine the binary censored status and continuous survival time. Therefore, if the definition of sensitivity and specificity have been slightly modified, the ROC curve can be applied to the survival data. In the past literature, some scholars have extended it when conditioned at time-independent covariate to fit Cox proportional hazard model, and combined with time-dependent sensitivity and specificity to predict model accuracy. However, in some medical studies, there are often data that violate the proportional hazard assumption. Therefore, we recommend to replace the Cox proportional hazard model as the parametric accelerated failure time model with combining time-dependent sensitivity, specificity, and AUC. And finally use AUC and Concordance to evaluate the ability of biomarkers to discriminate diseases and further extended this method to longitudinal covariates.
關鍵字(中) ★ 接受者作業特徵曲線下面積
★ 時間相依接受者作業特徵曲線下面積
★ 事件型敏感度
★ 動態型特異度
★ 預測
★ 一致性指標
★ Cox風險迴歸模型
★ 加速失效模型
關鍵字(英)
論文目次 第一章 序論 1
1.1 傳統的ROC曲線分析……………………………………….2
1.1.1 敏感度與特異度………………………………………..2
1.1.2 ROC曲線……………………………………………….3
1.1.3 建構ROC……………………………………………….4
1.1.4 建構AUC……………………………………………….6
1.2 推廣的ROC曲線分析………………………………………..9
1.2.1 時間相依的ROC曲線…………………………………9
1.2.2 時間相依的AUC和一致性(Concordance)…………..11
1.3 Cox比例風險與長期追蹤資料之聯合建模………………..16
1.4 參數化AFT模型與長期追蹤資料之聯合建模……………17
第二章 統計方法 18
2.1 Cox迴歸模型………………………………………………..19
2.2 AFT迴歸模型……………………………………………….22
2.2.1 Weibull迴歸模型……………………………………..24
2.2.2 Loglogistic迴歸模型…………………………………25
2.2.3 Lognormal迴歸模型…………………………………26
第三章 模擬研究 28
3.1 時間固定共變數…………………………………………….28
3.1.1 資料生成來自Weibull Cox模型…………..................28
3.1.2 資料生成來自 Weibull AFT模型……………………32
3.1.3 資料生成來自 Loglogistic Cox模型……...................36
3.1.4 資料生成來自 Loglogistic AFT模型……..................40
3.1.5 資料生成來自 Lognormal Cox模型….......................44
3.1.6 資料生成來自 Lognormal AFT模型……..................48
第四章 資料分析 52
4.1 資料背景與分析…………………………………………..52
4.2 分析結果…………………………………………………..54
第五章 總結與討論 65
參考文獻 67
參考文獻 參考文獻
Bamber, D. (1975). The area above ordinal dominance graph and the area
below the receiver operating characteristic graph. Journal of Mathematical
Psychology 12, 387-415.
Blanche, P., Dartigues, J. F. and Jacqmin-Gadda, H. (2013). Estimating
and comparing timedependent areas under receiver operating characteristic
curves for censored event times with competing risks. Statistics in
medicine 32, 5381-5397.
Blanche, P. (2015). timeROC: Time-Dependent ROC Curve and AUC for
Censored Survival Data. R package version 0.3. URL http://CRAN.Rproject.
org/package=timeROC.
Cai, T., Pepe, M. S., Lumley, T., Zheng, Y., and Jenny, N. S. (2003). The
sensitivity and speci city of markers for event times. University of Wash-
ington Technical Report 188, 1-30.
Cai, Z. and Sun, Y. (2003). Local linear estimation for timedependent
coecients in Cox′s regression models. Scandinavian Journal of Statistics
30, 93-111.

Chiou, S. H., Kang, S., and Yan, J. (2014). Fitting Accelerated Failure
Time Models in Routine Survival Analysis with R Package aftgee. Journal
of Statistical Software 61(11), 1-23.
Cox, D. R. (1972). Regression models and life tables. Journal of the Royal
Statistical Society, Series B Methodological 34, 187-220.
Etzioni, R., Pepe, M., Longton, G., Hu, C., and Goodman, G. (1999). Incorporating
the time dimension in receiver operating characteristic curves:
A case study of prostate cancer. Medical Decision Making 19, 242-251.
Fleming, T. R. and Harrington, D. P. (1991). Counting Processes and Sur-
vival Analysis. New York: John Wiley & Sons.
Grambsch, P. M. and Therneau, T. M. (1994). Proportional Hazards Tests
and Diagnostics Based on Weighted Residuals. Biometrics 81, 515-26.
Hanley, J. A. and McNeil, B. J. (1982). The meaning and use of the area
under a receiver operating characteristic (ROC) curve. Radiology 143, 29-
36.

Harrell, F. E., Lee, K. L., and Mark, D. B. (1996). Multivariable prognostic
models: Issues in developing models, evaluating assumptions and
adequacy, and measuring and reducing errors. Statistics in Medicine 15,
361-387.
Heagerty, P. J., Lumley, T., and Pepe, M. S. (2000). Time-dependent ROC
curves for censored survival data and a diagnostic marker. Biometrics 56,
337-344.
Heagerty, P. J. and Zheng, Y. (2004). Semiparametric estimation of timedependent
ROC curves for longitudinal marker data. Biometrics 5, 651-
632.
Heagerty, P. J. and Zheng, Y. (2005). Survival Model Predictive Accuracy
and ROC Curves. Biometrics 61, 92-105.
Heagerty, P. J. and Paramita Saha (2012). risksetROC: Riskset ROC curve
estimation from censored survival data. R package version 1.0.4. URL
http://CRAN .R-project.org/package=risksetROC.

Hung, H., Chiang, C.T. (2010). Estimation methods for time-dependent
AUC models with survival data. Canadian Journal of Statistics 38(1),
8-26.
Henderson, R. (1995). Problems and prediction in survival data analysis.
Statistics in Medicine, 14, 161-184.
Hess K. R., Serachitopol D. M. and Brown B. W. (1999). Hazard function
estimators: A simulation study. Statistics in Medicine 18(22), 3075-3088.
Kalb
eisch, J. D. and Prentice, R. L. (2002). The Statistical Analysis of
Failure Time Data. New York: John Wiley & Sons.
Mueller, H. and Wang, J. (1994) Hazard Rate Estimation Under Random
Censoring with Varying Kernels and Bandwidth. Biometrics 50, 61-76.
O′Quigley, J. and Xu, R. (2000). Proportional hazards estimate of the conditional
survival function. Journal of the Royal Statistical Society, Series
B, Methodological 62, 667-680.
O′Quigley, J. and Xu, R. (2001). Explained variation in proportional haz-

ards regression. Handbook of Statistics in Clinical Oncology, J. Crowley
(ed), 397-409. New York: Marcel Dekker.
Pepe, M. S. (2003). The Statistical Evaluation of Medical Tests for Classi-
cation and Prediction. Oxford: Oxford University Press.
Schemper, M. and Henderson, R. (2000). Predictive accuracy and explained
variation in Cox regression. Biometrics 56, 249-255.
Slate, E. H. and Turnbull, B. W. (2000). Statistical models for longitudinal
biomarkers of disease onset. Statistics in Medicine 19, 617-637.
Song, X., Davidian, M. and Tsiatis, A. A. (2002). A semiparametric likelihood
approach to joint modelling of longitudinal and time-to-event data.
Biometrics 58, 742-753.
Terry M. Therneau and Mayo Foundation(1999).A package for survival
analysis in S.
Tseng, Y. K., Wang, J. L. and Hsieh, F. (2005). Joint Modeling of Accelerated
Failure Time and Longitudinal Data. Biometrika 92, 587-603.
Tseng, Y. K., Wang, J. L., SU, Y. R. and Mao, M. (2015). An extended

hazard model with longitudinal covariates. Biometrika 102, 135-150.
Tsiatis, A. A. and Davidian, M. (2001). A Semiparametric Estimator for
the Proportional Hazards Model with Longitudinal Covariates Measured
with Error. Biometrika 88, 447-458.
van Houwelingen, H. C. and Putter H. (2012). Dynamic Prediction in Clin-
ical Survival Analysis Chapman & Hall
Wang, Y. and Taylor, J. M. G. (2001). Jointly modeling longitudinal and
event time data with application to acquired immunode ciency syndrome.
Journal of the American Statistical Association 96, 895-905.
Wulfsohn, M. S. and Tsiatis, A. A. (1997). A Joint Model for Survival and
Longitudinal Data Measured with Error. Biometrics 53, 330-339.
Zhou, X. H., McClish, D. K., and Obuchowski, N. A. (2002). Statistical
Methods in Diagnostic Medicine. New York: John Wiley & Sons.

中華民國衛生福利部疾病管制署(2018)。傳染病防治工作手冊。
張雅玟(2015)。三種時間相依的接受者作業特徵曲線下面積估計方法之
比較與修正。國立中央大學統計研究所碩士論文。
林園馨(2016)。Model-base Time-dependent AUC and Predictive Accuracy.
國立中央大學統計研究所碩士論文。
指導教授 曾議寬 審核日期 2018-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明