博碩士論文 104521030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:18.119.122.140
姓名 林敬儒(Ching-Ju Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 空間隨機樣態分類器的識別
(Identification of the Classifier for the Pattern of Spatial Randomness)
相關論文
★ E2T-iSEE:應用於事件與情感狀態轉移排程器之編輯★ “偶”:具情感之球型機器人
★ 陣列區塊電容產生器於製程設計套件之評量★ 應用於數位家庭整合計畫影像傳輸子系統之設計考量與實現
★ LED 背光模組靜電放電路徑★ 電阻串連式連續參考值產生器於製程設計套件之評量
★ 短篇故事分類與敘述★ 延伸考慮製程參數相關性之類比電路階層式變異數分析器
★ 以電子電路觀點對田口式惠斯登電橋模擬實例的再分析★ 應用於交換電容ΔΣ調變電路之電容排列良率自動化擺置平台
★ 陣列MiM電容的自動化佈局★ 陣列MiM電容的平衡接點之通道繞線法
★ 氣象資訊達人★ 嵌入式WHDVI多核心Forth微控制器之設計
★ 應用於電容陣列區塊之維持比值良率的通道繞線法★ 使用於矽穿孔耦合分析之垂直十字鏈基板結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本篇論文為以隨機晶圓為基礎使用統計檢定假說,找出不同晶圓尺寸間迴力棒圖的關係,在設計出演算法方便使用者只須要給出尺寸就能快速取得隨機瑕疵所造成的晶圓圖特性分界,以達到快速判讀晶圓圖異常的目地。
首先,我們先選擇出八種尺寸進行較縝密及精確的邊界模擬,對此八種尺寸以四種分佈兩次線性回歸及不同回歸階數做不同的判別率比較,最終取得較方便及優良的方法。經由此實驗結果發現,不同尺寸的迴力棒圖有中心線共線及寬度與尺寸有關係,再以這兩項特點進行模型建造,擴展成由使用者決定晶圓尺寸後快速產生出高判別度的迴力棒邊界。
在本實驗中,兩種方法各有優缺點,第一種模擬方法較為精確但是繁瑣及耗時,大量的時間花費在產生大量隨機些疵造成的晶圓上且尺寸越大所需時間越多,第二種方法雖然準確度較低但也有達到九成五以上的準確性且不論何種尺寸完成速度均極快。
摘要(英) In this paper, we find the relationship between diesize and Boomerang Chart base on wafer map which random distribution of defects. And building model by the relationship that let user just provided diesize to get bound of wafer cause by random defects. To achieve the aim of discrimination abnormal wafers fast.
At first, we choose eight kinds of size of wafers to simulat bound accurately and carefully. We compared 4 kinds of distribution and several kinds of methods and linear regression order. To get the fitter and more convenient method. In Boomerang Chart, we discover that the centerline of all diesizes are almost collinear and the relationship between width and diesize in this experiment. Modeling base on the two factors to let user get bound of Boomerang Chart fast and accurately just provided diesize.
In this experiment, the merits and demerits of two kind of methods are different. The simulation-base is more accurate but cumbersome and time-consuming. We spend lot of time generating random defect wafer and the time increases as the diesize increases. The rule-base is generating fast whatever diesize. Accuracy of bound is up to 95% although it is more imprecise.
關鍵字(中) ★ 晶圓
★ 隨機瑕疵
★ 統計檢定假說
★ 線性回歸
★ 標準差
★ 信賴區間
關鍵字(英) ★ wafer
★ random defect
★ testing statistical hypothesis
★ linear regression
★ standard deviation
★ confidence interval
論文目次 中文摘要 I
ABSTRACT II
誌 謝 III
目 錄 IV
圖目錄 VI
表目錄 XI
第一章 簡介 1
1-1 前言 1
1-2 研究動機 1
1-3 研究方法 2
1-4 論文架構 2
第二章 文獻回顧 3
2-1 相關研究 3
2-2 迴力棒特徵圖 6
2-2.1 特徵參數NBD、NCL 6
2-2.2 特徵參數搜尋方式 6
2-2.3 特徵參數搜尋範例 8
2-2.4 損壞晶粒良率 YBD 9
2-3 型I與型II錯誤 10
第三章 實驗規劃 11
3-1 產生訓練晶圓 12
3-2 生成邊界線 14
3-3 測試晶圓的產生 17
3-4 虛擬晶圓檢測 19
3-5真實晶圓檢測 28
3-6中心線共線與標準差與尺寸關係 30
3-7建造模型 31
3-8模型測試 32
3-9真實晶圓判別 33
第四章 結論 38
參考文獻 40
參考文獻 [1] Richard H. Williams and Charles F. Hawkins, “ERRORS IN TESTING”, Test Conference, International, 1990.
[2] Q. Peter He, Member, IEEE, and Jin Wang, Member, IEEE, “Fault Detection Using the k-Nearest Neighbor Rule for Semiconductor Manufacturing Processes” , IEEE Transactions on Semiconductor Manufacturing, VOL. 20, NO. 4, Nov 2007.
[3] Q. Peter He and Jin Wang, “Principal Component based k-Nearest-Neighbor Rule for
Semiconductor Process Fault Detection” , 2008 American Control Conference
Westin Seattle Hotel, Seattle, Washington, USA, June 11-13, 2008
[4] Ramy Baly and Hazem Hajj, “Wafer Classification Using Support Vector Machines”, IEEE Transactions on Semiconductor Manufacturing, VOL. 25, NO. 3, AUGUST 2012
[5] Chenn-Jung Huang, Chi-Feng Wu, Chua-Chin Wang, “Image Processing Techniques for Wafer Defect Cluster Identification”, IEEE Design & Test of Computers, VOL. 19, Issue. 2, March 2002.
[6] Mark H. HANSEN, Vijayan N. NAIR, David J. FRIEDMAN, “Monitoring Wafer Map Data From Integrated Circuit Fabrication Processes for Spatially Clustered Defects”, Carnegie Mellon University , November 2014.
[7] Jwu-E Chen, Mill-Jer Wang, Yen-Shung Chang, Shaw Cherng Shyu, and
Yung-Yuan Chen, “ Yield Improvement by Test Error Cancellation ”, in Test
Symposium (ATS), pp.258-260, Nov. 1996.
[8] C. - K. Hsu, Lin, F., Cheng, K. - T. Tim, Zhang, W., Li, X., Carulli, J. M., and
Butler, K. M., “Test data analytics - Exploring spatial and test-item correlations
in production test data”, in Test Conference (ITC), pp.1-10, Sep. 2013.
[9] Ming-Ju Wu, Jyh-Shing Roger Jang, and Jui-Long Chen, “Wafer Map Failure
Pattern Recognition and Similarity Ranking for Large-scale Datasets”, IEEE
Transactions on Semiconductor Manufacturing, vol.28, no.1, pp.1-12, Feb. 2015.
[10] S. Zhang, Lin, F., Hsu, C. - K., Cheng, K. - T. Tim, and Wang, H., “Joint Virtual
Probe: Joint exploration of multiple test items′ spatial patterns for efficient silicon characterization and test prediction”, in Design, Automation and Test in Europe Conference and Exhibition (DATE), pp.1-6, Mar. 2014.
[11] F. Lin, Hsu, C. - K., and Cheng, K. - T. Tim, “Learning from Production Test
Data: Correlation Exploration and Feature Engineering”, in Test Symposium
(ATS), pp.236-241, Nov. 2014.
[12] F. Lin, Hsu, C. - K., and Cheng, K. - T. Tim, “Feature engineering with canonical
analysis for effective statistical tests screening test escapes”, in Test Conference (ITC), pp.1-10, Oct. 2014.
[13]廖仁男, “Boomerang Equivalence: A Classifier for Uniform Wafer Maps ” , 碩
士論文﹐中央大學﹐2010.
[14]曾國銓, “A Non-uniformly Distributed Defect Map Analysis by Quantification
Model” , 碩士論文﹐中華大學﹐2013.
[15]林正田,“Wafer Map Analysis from a Random-Defect-Source Perspective”,
碩士論文﹐中央大學﹐2012.
[16]邱政文,“Bat-wing : an inductive model for wafer map characterization and generation”, 碩士論文﹐中央大學﹐2006.
[17]葉昱瑋,“Application of Boomerang Chart to Real-World Mass Production Wafer Maps”, 碩士論文﹐中央大學﹐2016.
[18] MATLAB之工程應用,http://bime-matlab.blogspot.tw/
指導教授 陳竹一(Jwu-E Chen) 審核日期 2018-4-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明