參考文獻 |
[1]D. Lewis, “SerDes architectures and applications,” in Proc. Euro DesignCon, 2004.
[2]C.-L. Hung, “On techniques of clock generator used in high-speed wireline transmission systems,” Ph.D. dissertation, Dept. Elect. Eng., National Central Univ., Taoyuan City, Taiwan (R.O.C.), 2015.
[3]K.-H. Cheng, C.-L. Hung, and C.-H. Chang, “A 0.77 ps RMS jitter 6-GHz spread-spectrum clock generator using a compensated phase-rotating technique” IEEE J. Solid-State Circuits, vol. 46, no. 5, pp. 1198–1213, May. 2011.
[4]K. B. Hardin, J. T. Fessler, and D. R. Bush, “Spread spectrum clock generation for the reduction of radiated emissions,” in Proc. IEEE Int. Symp. Electromagn. Compat., Aug. 1994, pp. 227–231.
[5]C.-H. Wong and T.-C. Lee, “A 6-GHz self-oscillating spread-spectrum clock generator,” IEEE Trans. Circuits Syst. I, Reg. Paper, vol. 60, no.5, pp. 1264–1273, May 2013.
[6]D sheng, C.-C. Chung, and C.-Y. Li, “A low-power and portable spread spectrum clock generator for SoC applications,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19, no. 6, pp. 1113–1117, Jun. 2011.
[7]F. Pareschi, G. Setti, and R. Rovatti, “A 3-GHz serial ATA spread-spectrum clock generator employing a chaotic PAM modulation,” IEEE Trans. Circuits Syst. I, Reg. Paper, vol. 57, no. 10, pp. 2577–2587, Oct. 2010.
[8]S.-T. Lin and S.-I. Liu, “A 1.5 GHz all-digital spread spectrum clock generator,” IEEE J. Solid-State Circuit, vol. 44, no. 11, pp. 3111–3119, Nov. 2009.
[9]I-T. Lee, S.-H. Ku, and S.-I. Liu, “An all-digital spread-spectrum clock generator with self-calibrated bandwidth,” IEEE Trans. Circuits Syst. I, Reg. Paper, vol. 60, no. 10, pp. 2813–2822, Nov. 2013.
[10]M. Aoyama, K. Ogasawara, M. Sugawara, T. Ishibashi, T. Ishibashi, S. Shimoyama, K. Yamaguchi, T. Yanagita, and T. Noma, “3 Gbps, 5000 ppm spread spectrum serdes PHY with frequency tracking phase interpolators for serial ATA,” in Proc. IEEE Symp. On VLSI, Jun. 2003, pp. 107–110.
[11]P.-J. Liu, J.-N. Tai, H.-S. Chen, J.-H. Chen, and Y.-J. E. Chen, “Spur-reduction design of frequency-hopping DC-DC converters,” IEEE Trans. Power Electron, vol. 27, no. 11, pp. 4763–4771, Nov. 2012.
[12]S. K. Dunlap, and T. S. Fiez, “A noise-shaped switching power supply using a delta–sigma modulator,” IEEE Trans. Circuits Syst. I, Reg. Paper, vol. 51, no. 6, pp. 1051–1061, Jun. 2004.
[13]E. N. Y. Ho and P. K. T. Mok, “Design of PWM ramp signal in vltage-mode CCM random switching frequency buck converter for conductive EMI reduction,” IEEE Trans. Circuits Syst. I, Reg. Paper, vol. 60, no. 2, pp. 505–515, Feb. 2013.
[14]J. N. Babanezhad, “A 3.3 V analog adaptive line-equalizer for fast Ethernet data com-munication,” in Proc. IEEE Custom Integr. Circuits Conf., May, 1998, pp. 343–346.
[15]S. H. Hall, G. W. Hall, and J. A. McCall, High-Speed Digital System Design, Hoboken, NJ, USA: Wiley, 2000.
[16]B. Razavi, Design of Integrated Circuits for Optical Communications, New York, NY, USA: McGraw-Hill, 2003.
[17]J. Hancock, “Identifying sources of jitter,” in Proc. Euro DesignCon, 2004.
[18]J. T. Stonick, G. Y. Wei, J. L. Sonntag, and D. K. Weinlader, “An adaptive PAM-4 5-Gb/s backplane transceiver in 0.25-μm CMOS,” IEEE J. Solid-State Circuits, vol. 38, no.3, pp. 436–443, Mar. 2003.
[19]T. Beukema, M. Sorna, K. Selander, S. Zier, B. L. Ji, P. Murfet, J. Mason, W. Rhee, H. Ainspan, B. Parker, and M. Beakes, “A 6.4-Gb/s CMOS SerDes core with feed-forward and decision-feedback equalization,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2633–2645, Dec. 2005.
[20]B. Kim, J. F. Bulzacchelli and D. J. Friedman, “A 10-Gb/s compact low-power serial I/O with DFE-IIR equalization in 65-nm CMOS,” IEEE J. Solid-State Circuits, vol. 44 , no. 12 , pp. 3526–3538 , Dec. 2009.
[21]S. Shahramian and A. C. Carusone, “A 0.41 pJ/Bit 10 Gb/s hybrid 2 IIR and 1 discrete-time DFE tap in 28 nm-LP CMOS,” IEEE J. Solid-State Circuits, vol. 50, no. 7, pp. 1722–1735, Feb. 2015.
[22]J. S. Choi, M. S. Hwang, and D. K. Jeong, “A 0.18-um CMOS 3.5-Gb/s continuous-time adaptive cable equalizer using enhanced low-frequency gain control method,” IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 419–425, Mar. 2004.
[23]G. Zhang and M. M. Green, “A 10 Gb/s BiCMOS adaptive cable equalizer,” IEEE J. Solid-State Circuits, vol. 40, no.11, pp. 2132–2140, Nov. 2005.
[24]J. Lee, “A 20-Gb/s adaptive equalizer in 0.13-um CMOS technology,” IEEE J. Solid-State Circuits, vol. 41, no. 9, pp. 2058–2066, Sep. 2006.
[25]S. Gondi and B. Razavi, “Equalization and clock and data recovery techniques for 10-Gb/s CMOS serial-link receivers,” IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1999–2011, Sep. 2007.
[26]C.-F. Liao and S.-I. Liu, “A 40-Gb/s CMOS serial-link receiver with adaptive equalization and clock/data recovery,” IEEE J. Solid-State Circuits, vol. 43, no. 11, pp. 2492–2502, Nov. 2008.
[27]S.-I. Liu and C.-Y. Yang, Phase-Locked Loop, Taichung City, Taiwan (R.O.C.): Tsanghai, 2008.
[28]W.-Y. Lee, K.-D. Hwang, and L.-S. Kim, “A 5.4/2.7/1.62-Gb/s receiver for DisplayPort version 1.2 with multi-rate operation scheme,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 12, pp. 2858–2866, Nov. 2012.
[29]D. Dalton, K. Chai, E. Evans, M. Ferriss, D. Hitchcox, P. Murray, S. Selvanayagam, P. Shepherd, and L. DeVito, “12.5-Mb/s to 2.7-Gb/s continuous-rate CDR with automatic frequency acquisition and data-rate readback,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2713–2725, Dec. 2005.
[30]J. Kim and D.-K. Jeong, “Multi-gigabit-rate clock and data recovery based on blind oversampling,” IEEE Commun. Mag., vol. 41, no. 12, pp. 68–74, Dec. 2003.
[31]S.-W. Kwon, J.-Y. Lee, J. Lee, K. Han, T. Kim, S. Lee, J.-S. Lee, T. Yoon, H. Won, J. Park, and H.-M. Bae, “An automatic loop gain control algorithm for bang-bang CDRs,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 12, pp. 2817–2828, Dec. 2015.
[32]H. J. Jeon, R. Kulkarni, and Y. C. Lo, “A bang-bang clock and data recovery using mixed mode adaptive loop gain strategy,” IEEE J. Solid-State Circuits, vol. 48, no. 6, pp. 1398–1415, Jun. 2013.
[33]H. Song, D. S. Kim, D. H. Oh, S. Kim, and D. K. Jeong, “A1.0–4.0-Gb/s all-digital CDR with 1.0-ps period resolution DCO and adaptive proportional gain control,” IEEE J. Solid-State Circuits, vol. 46, pp. 424–434, Feb. 2011.
[34]J. Song, I. Jung, M. Song, Y. H. Kwak, S. Hwang, and C. Kim, “A 1.62 Gb/s–2.7 Gb/s Referenceless Transceiver for DisplayPort v1.1a with weighted phase and frequency detection,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 2, pp.268–278, Feb. 2013.
[35]R.-J. Yang and S.-I. Liu, “A 40–550 MHz harmonic-free all-digital delay-locked loop using a variable SAR algorithm,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 361–373, Feb. 2007.
[36]C.-N. Chuang and S.-I. Liu, “A 0.5-5-GHz wide-range multiphase DLL with a calibrated charge pump,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 54, no. 11, pp. 939–943, Nov. 2007.
[37]C.C. Chen, and S.I. Liu, “An infinite phase shift delay-locked loop with voltage-controlled sawtooth delay line,” IEEE J. Solid-State Circuits, vol. 43, no. 11, pp. 2413–2421, Nov. 2008.
[38]X.Yu, W. Rhee, Z.Wang, J. B. Lee, and C. Kim, “A 0.4-to-1.6GHz low-OSR ΔΣ DLL with self-referenced multiphase generation,” in IEEE Int. ISSCC Dig. Tech. Papers, Feb. 2009, pp. 398–400.
[39]Y.-S. Kim, S.-K. Lee, H.-J. Park, and J.-Y. Sim, “A 110 MHz to 1.4 GHz locking 40-Phase all-digital DLL,” IEEE J. Solid-State Circuits, vol. 46, no.2, pp. 435–444, Feb. 2011.
[40]K. H. Cheng, C. W. Su, M. J. Wu, and Y. L. Chang, “A wide-range DLL-based clock generator with phase error calibration,” in Proc. IEEE Int. Conference on Electron., Circuits and Syst., Aug. 2008, pp. 798–801.
[41]S. Ok, K. Chung, J. Koo, and C. Kim, “An antiharmonic, programmable, DLL-based frequency multiplier for dynamic frequency scaling,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 18, no. 7, pp. 1130–1134, Jul. 2010
[42]A. Ojani, B. Mesgarzadeh, and A. Alvandpour, “Modeling and analysis of harmonic spurs in DLL-based frequency synthesizers,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol.61, no. 11, pp. 3075–3084, Nov. 2014.
[43]I-T. Lee, Y.-T. Tsai, and S.-I. Liu, “A wide-range PLL using self-healing prescaler VCO in 65-nm CMOS,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 21, no. 2, pp. 250–258, Feb. 2013.
[44]T. Ebuchi, Y. Komatsu, T. Okamoto, Y. Arima, Y. Yamada, K. Sogawa, K. Okamoto, T. Morie, T. Hirata, S. Dosho, and T. Yoshikawa, “A 125–1250 MHz process-independent adaptive bandwidth spread spectrum clock generator with digital controlled self-calibration,” IEEE J. Solid-State Circuits, vol. 44, no. 3, pp. 763–774, Mar. 2009.
[45]C.-C. Chen, C.-C. Li, B.-J. Huang, K.-Y. Lin, and H. Wang, “Ring-based triple-push VCOs with wide continuous tuning ranges,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 9, pp. 217 3–2183, Sept. 2009.
[46]O. Momeni and E. Afshari, “High power terahertz and millimeter-wave oscillator design a systematic approach,” IEEE J. Solid-State Circuits, vol. 46, no. 3, pp. 583–597, Mar. 2011.
[47]T. Saeki, Y. Nakaoka, M. Fujita, A. Tanaka, K. Nagata, K. Sakakibara, T. Matano, Y. Hoshino, K. Miyano, S. Isa, S. Nakazawa, E. Kakehashi, J. M. Drynan, M. Komuro, T. Fukase, H. Iwasaki, M. Takenaka, J. Sekine, M. Igeta, N. Nakanishi, T. Itani, I. Yoshida, K. Yoshino, S. Hashimoto, T. Yoshii, M. Ichinose, T. Imura, M. Uziie, S. Kikuchi, K. Koyama, Y. Fukuzo, and T. Okuda, “A 2.5-ns clock access, 250-MHz, 256-Mb SDRAM with synchronous mirror delay,” IEEE J. Solid-State Circuits, vol. 31, no. 11, pp. 1656–1668, Nov. 1996.
[48]T. Seaeki, H. Nakamura, and J. Shimizu, “A 10 ps jitter 2 clock cycle lock time CMOS digital clock generator based on an interleaved synchronous mirror delay scheme,” in Proc. IEEE Symp. On VLSI, Jun. 1997, pp. 109–110.
[49]K. Sung, B. D. Yang, and L. S. Kim, “Low power clock generator based on an area-reduced interleaved synchronous mirror delay scheme,” in Proc. IEEE Int. Symp. Circuits Syst., May 2002, pp. 671–674.
[50]T. Saeli, K. Minami, H. Yoshida, and H. Suzuki, “A direct-skew-detect synchronous mirror delay for application-specific integrated circuits,” IEEE J. Solid-State Circuits, vol. 34, no. 3, pp. 372–379, Mar. 1999.
[51]K. Sung and L. S. Kim, “A high-resolution synchronous mirror delay using successive approximation register,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 1997–2004, Nov. 2004.
[52]K.-H. Cheng, C.-W. Su, S.-W. Lu, “Wide-range synchronous mirror delay with arbitrary input duty cycle,” IET Electron. Lett., vol. 44, no.11, pp. 655–667, May 2008.
[53]K.-H. Cheng, K.-W. Hong, C.-H. Chen, and J.-C. Liu, “A high precision fast locking arbitrary duty cycle clock synchronization circuit,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19, no. 7, pp. 1218–1228, Jul. 2011.
[54]J.-B. Lan, F.-C. Lai, Z.-Q. Gao, H. Ma and J.-W. Zhang, “A nonlinear phase frequency detector for fast-lock phase-locked loops”, in Proc. Asian Solid-State Circuits Conf., Oct. 2009, pp. 1117–1120.
[55]J.-C. Chih, C.-T. Chiu, J.-M. Wu, S.-H. Hsu, and Y.-S. Hsu, “Piecewise-linear phase frequency detector for fast-lock phase-locked loops,” in Proc. IEEE Int. Midwest Symp. on Circuits and Syst., Aug. 2011, pp. 1–4.
[56]C.-S. Lin, T.-H. Chien, C.-L. Wey, C.-M. Huang, and Y.-Z. Juang, “An edge missing compensator for fast settling wide locking range phase-locked loops,” IEEE J. Solid-State Circuits, vol.44, no.11, pp.3102–3109, Nov. 2009.
[57]W.-H. Chiu, Y.-H. Huang, T.-H. Lin, “A dynamic phase error compensation technique for fast-locking phase-locked loops,” IEEE J. Solid-State Circuits, vol.45, no.6, pp.1137–1148, Jun. 2010.
[58]Y.-F. Lin, “A 2.5 GHz fast locking self-calibration phase-locked loop designed in 90 nm process,” M.S. thesis, Dept. Elect. Eng., National Central Univ., Taoyuan City, Taiwan (R.O.C.), 2008.
[59]J. Lee, and H.-D. Wang, “Study of subharmonically injection-locked PLLs,” IEEE J. Solid-State Circuit, vol. 44, no. 5, pp. 1539–1553, May 2009.
[60]Y. H. Kao, Radio-Frequency Phase-Locked Loop Integrated Circuit Design, Taichung City, Taiwan (R.O.C.): Tsanghai, 2005.
[61]S. Ye, L. Jansson, and I. Galton, “A multiple-crystal interface PLL with VCO realignment to reduce phase noise,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1795–1803, Dec. 2002.
[62]M. S. McCorquodale, J. D. O′ Day, S. M. Pernia, G. A. Carichner, S. Kubba, and R. B. Brown, "A monolithic and self-referenced RF LC clock generator compliant with USB 2.0," IEEE J. Solid-State Circuits, vol. 42, no.2, pp. 385–399, Feb. 2007.
[63]M. S. McCorquodale, S. M. Pernia, J. D. O’Day, G. Carichner, E. Marsman, N. Nguyen, S. Kubba, S. Nguyen, J. Kuhn, and R. B. Brown, “A 0.5-to- 480MHz self-referenced CMOS clock generator with 90ppm total frequency error and spread-spectrum capability,” in IEEE Int. ISSCC Dig. Tech. Papers, Feb. 2008, pp. 350–351.
[64]F. Sebastiano, L. Breems, K. Makinwa, S. Drago, D. Leenaerts, and B. Nauta, “A low-voltage mobility-based frequency reference for crystal-less ULP radios,” IEEE J. Solid-State Circuits, vol. 44, no. 7, pp. 2002–2009, July. 2009.
[65]F. Sebastiano, L. J. Breems, K. Makinwa, S. Drago, D. Leenaerts, and B. Nauta, “A 65-nm CMOS temperature-compensated mobility-based frequency reference for wireless sensor networks” , IEEE J. Solid-State Circuits, vol.46, no.7, pp.1544–1552, Jul. 2011.
[66]Y. Lu, G. Yuan, L. Der, W.-H. Ki, and C. P. Yue, “A ±0.5 % precision on-chip frequency reference with programmable switch array for crystal-less applications” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 60, no. 10, pp. 642–646, Oct. 2013.
[67]Y.-H. Chiang, and S.-I. Liu, “A submicrowatts 1.1 MHz CMOS relaxation oscillator with temperature compensation,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 60, no. 12, pp. 837–841, Dec. 2013.
[68]Y.-H. Chiang, and S.-I. Liu, “Nanopower CMOS relaxation oscillator with sub-100 ppm/°C temperature coefficient,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no. 9, pp. 661–665, Jun. 2014.
[69]W.-H. Sung, S.-Y. Hsu, J.-Y. Yu, C.-Y. Yu, and C.-Y. Lee, “A frequency accuracy enhanced sub-10uW on-chip clock generator for energy efficient crystal-less wireless biotelemetry applications,” in Proc. IEEE Symp. On VLSI, Jun. 2010, pp. 115–116.
[70]J.-C. Liu, W.-C. Lee, H.-Y. Huang, K.-H. Cheng, C.-J. Huang, Y.-W. Liang, J.-H. Peng, and Y.-H. Chu, “A 0.3-V all digital crystal-less clock generator for energy harvester applications,” in Proc. Asian Solid-State Circuits Conf., 2012, pp.117–120.
[71]Y.-H. Huang, “A 6 GHz all-digital spread-spectrum clock generator with high speed phase selector,” M.S. thesis, Dept. Elect. Eng., National Central Univ., Taoyuan City, Taiwan (R.O.C.), 2013.
[72]H.-Y. Huang and F.-C. Tsai, ‘‘Analysis and optimization of ring oscillator using sub-feedback scheme,’’ in Proc. IEEE Int. Symp. Design and Diagnostics of Electron. Circuits and Syst., Apr. 2009, pp. 28–29.
[73]V. Kratyuk, ‘‘Digital phase-locked loops for multi-gHz clock generation,” Ph.D. dissertation, Dept. Elect. and Comput. Eng., Oregon State Univ., Corvallis, OR, USA, 2006.
[74]D. D. Caro, C. A. Romani, N. Petra, A. G. M. Strollo, and C. Parrella, “A 1.27 GHz all-Digital spread spectrum clock generator/synthesizer in 65 nm CMOS,” IEEE J. Solid-State Circuit, vol. 45, no. 5, pp. 1048–1060, Mar. 2010.
[75]S. Jang, S. Kim, S.-H. Chu, G.-S. Jeong, Y. Kim, and D.-K. Jeong, “An all-digital bang-bang PLL using two-point modulation and background gain calibration for spread spectrum clock generation,” in Proc. IEEE Symp. On VLSI, Jun. 2015, pp. C136–C137.
[76]D. D. Caro, F. Tessitore, G. Vai, N. Imperato, N. Petra, E. Napoli, C. Parrella, and A. G. M. Strollo, “A 3.3 GHz Spread-Spectrum Clock Generator Supporting Discontinuous Frequency Modulations in 28 nm CMOS,” IEEE J. Solid-State Circuit, vol. 45, no. 5, pp. 1048–1060, Mar. 2010.
[77]H.-F. Ting, “A Low EMI DC-DC buck converter with multiple-slopes spread-spectrum clock technique,” M.S. thesis, Dept. Elect. Eng., National Central Univ., Taoyuan City, Taiwan (R.O.C.), 2015.
[78]H.-H. Ko, “A high efficiency synchronous CMOS switching buck regulator with accurate current sensing technique,” M.S. thesis, Dept. Elect. Eng., National Central Univ., Taoyuan City, Taiwan (R.O.C.), 2007.
[79]C.-H. Tsai, C.-H. Yang, and J.-C. Wu, “A digitally controlled switching regulator with reduced conductive EMI spectra” IEEE Trans. Ind. Electron, vol. 60, no. 9, pp. 3938–3947, Sep. 2013.
[80]W.-R. Liou, M.-L. Yeh, P.-S. Chen, C.-C. Tseng, T.-Y. Huang, S.-C. Lin, C.-Y. Lin, and C.-H. Sun, “Monolithic low-EMI CMOS DC–DC boost converter for portable applications” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 2, pp. 420–424, Feb. 2014.
[81]M.-J. Lee, “A low-power adaptive equalizer with closeable digital-control self-slope detection,” M.S. thesis, Dept. Elect. Eng., National Central Univ., Taoyuan City, Taiwan (R.O.C.), 2015.
[82]D. Lee, J. Han, G. Han, and S. M. Park, “An 8.5-Gb/s fully integrated CMOS optoelectronic receiver using slope-detection adaptive equalizer,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2861–2873, Dec. 2010.
[83]M. Lee and A. A. Abidi, “A 9 b, 1.25 ps resolution coarse-fine time-to-digital converter in 90 nm CMOS that amplifies a time residue,” IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 769–777, Apr. 2008.
[84]R. B. Staszewski, S. Vemulapalli, P. Vallur, J. Wallberg, and P. T. Balsara, “1.3 V 20 ps time-to-digital converter for frequency synthesis in 90-nm CMOS,” IEEE Trans. Circuits and Syst. II, Exp. Briefs, vol. 53, no. 3, pp. 220–224, Mar. 2006.
[85]K.-H. Cheng, J. C. Liu, C.-Y. Chang, S. Y. Jiang, and K. W. Hong, “Built-in jitter measurement circuit with calibration techniques for a 3-GHz clock generator,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19, no. 8, pp. 1325–1335, Aug. 2011.
[86]H. Y. Huang, J. C. Liu, and K. H. Cheng, “All-digital PLL using pulse-based DCO,” in IEEE Int. Conf. on Electron., Circuits and Syst., Dec. 2007, pp. 1268–1271.
[87]K. H. Cheng, Y. C. Tsai, Y. H. Wu, and Y. F. Lin, “A 5-Gb/s inductorless CMOS adaptive equalizer for PCI express generation II applications,” IEEE Trans. Circuits and Syst. II, Exp. Briefs, vol. 57, no. 5, pp. 324–328, May 2010.
[88]W.-S. Kim, C.-K. Seong, andW.-Y. Choi, “A 5.4-Gbit/s adaptive continuous-time linear equalizer using asynchronous undersampling histograms,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 59, no. 9, pp.553–557, Sep. 2012.
[89]H. Liu, Y. Wang, C. Xu, X. Chen, L. Lin, Y. Yu, W. Wang, A. Majumder, G. Chui, D. Brown, and A. Fang, “A 5-Gb/s serial-link redriver with adaptive equalizer and transmitter swing enhancement,” IEEE Trans. Circuits and Syst. I, Reg. Papers, vol. 61, no.4, pp. 1001–1011, Apr. 2014.
[90]T.-T. Chen, “A clock and data recovery circuit with adaptive gain control,” M.S. thesis, Dept. Elect. Eng., National Central Univ., Taoyuan City, Taiwan (R.O.C.), 2015.
[91]M. Brownlee, P. K. Hanumolu, and U. K. Moon, “A 3.2 Gb/s oversampling CDR with improved jitter tolerance,” in Proc. IEEE Custom Integrated Circuits Conf., 2007, pp. 353–356.
[92]W.Y. Lee and L.S. Kim, “A 5.4-Gb/s clock and data recovery circuit using seamless loop transition scheme with minimal phase noise degradation,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 11, pp. 2518–2528, Nov. 2012.
[93]Y.-H. Tu, “A wide range delay-locked loop with phase error calibration and frequency multiplier,” M.S. thesis, Dept. Elect. Eng., National Central Univ., Taoyuan City, Taiwan (R.O.C.), 2010.
[94]J.-R. Yuan and C. Svensson, “High-speed CMOS circuit technique,” IEEE J. Solid-State Circuits, vol. 24, no. 1, pp. 62–70, Feb. 1989.
[95]J.-R. Yuan and C. Svensson, “Fast CMOS nonbinary divider and counter,” Electron. Lett., vol. 29, no. 13, pp. 1222–1223, Feb. 1993.
[96]K.-H. Cheng, C.-W. Su, and K.-F. Chang, “A high linearity, fast-locking pulsewidth control loop with digitally programmable duty cycle correction for wide range operation,” IEEE J. Solid-State Circuits, vol. 43, no. 2, pp. 399–413, Feb. 2008.
[97]J. S. Wang and C. Y. Cheng, “An all-digital delay-locked loop using an in-time phase maintenance scheme for low-jitter gigahertz operations,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 2, pp. 395–404, Feb. 2015.
[98]J.-H. Lim, J.-H. Bae, J. Jang, H.-K. Jung, H. Lee, Y. Kim, B. Kim, J.-Y. Sim, and H.-J. Park, “A delay locked loop with a feedback edge combiner of duty-cycle corrector with a 20%–80% input duty cycle for SDRAMs,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 63, no. 2, pp. 141–145, Feb. 2016.
[99]M. H. Hsieh, L.-H. Chen, S.-I. Liu, and C. C.-P. Chen, “A 6.7 MHz to 1.24 GHz 0.0318 mm2 fast-locking all-digital DLL using phase-tracing delay unit in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 51, no. 2, pp. 412–427, Feb. 2016.
[100]E. Bayram, A. F. Aref, M. Saeed, and R. Negra, “1.5–3.3 GHz, 0.0077 mm2, 7 mW all-digital delay-locked loop with dead-zone free phase detector in 0.13 μm CMOS,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 1, pp. 39–50, Jan. 2018.
[101]Y.-C. Hsu, “A wide range triple-push phase-locked loop with bandwidth calibration,” M.S. thesis, Dept. Elect. Eng., National Central Univ., Taoyuan City, Taiwan (R.O.C.), 2016.
[102]J. Kim, M. A. Horowitz, G.-Y. Wei, “Design of CMOS adaptive-bandwidth PLL/DLLs : A general approach,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 50, no. 11, pp. 860–869, Nov. 2003
[103]C.-H. Hsu, “A low supply voltage synchronous mirror delay with quadrature phase output,” M.S. thesis, Dept. Elect. Eng., National Central Univ., Taoyuan City, Taiwan (R.O.C.), 2012.
[104]M.-V. Krishna, M.-A. Do, K.-S. Yeo, C.-C. Boon, and W.-M. Lim, “Design and analysis of ultra low power true single phase clock CMOS 2/3 prescaler,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 1, pp. 72–82, Jan. 2010.
[105]M.-Y. Kim, D. Shin, H. Chae, C. Kim, “A low-jitter open-loop-all-digital clock generator with two-cycle lock-time,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 17, no. 10, pp. 1461–1469, 2009.
[106]Y.-G. Chen, H.-W. Tsao, and C.-S. Hwang, “A fast-locking all-digital deskew buffer with duty-cycle correction,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 10, pp. 270–280, Feb. 2013.
[107]K.-H. Cheng, K.-W. Hong, C.-F. Hsu, and B.-Q. Jiang, “An all-digital clock synchronization buffer with one cycle dynamic synchronizing,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 10, pp. 1818–1827, Oct. 2012.
[108]P.-Y. Li, “A fast-locking phase-locked loop with a digital band selector and an adaptive phase frequency detector,” M.S. thesis, Dept. Elect. Eng., National Central Univ., Taoyuan City, Taiwan (R.O.C.), 2013.
[109]T.-H. Lin and Y.-J. Lai, “An agile VCO frequency calibration technique for a 10-GHz CMOS PLL,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 340–349, Feb. 2007.
[110]J. Shin and H. Shin, “A 1.9–3.8 GHz fractional-N PLL frequency synthesizer with fast auto-calibration of loop bandwidth and VCO frequency,” IEEE J. Solid-State Circuits, vol. 47, no. 3, pp. 665–675, Mar. 2012.
[111]B. Zhao, Y. Lian, and H. Yang, “A low-power fast-settling bond-wire frequency synthesizer with a dynamic-bandwidth scheme,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 60, no. 5, pp. 1188–1199, May 2013.
[112]L. Bertulessi, L. Grimaldi, D. Cherniak, C. Samori, and S. Levantino, “A low-phase-noise digital bang-bang PLL with fast lock over a wide lock range,” in IEEE Int. ISSCC Dig. Tech. Papers, Feb. 2018, pp. 252–254.
[113]W.-R. Wang, “A high division-ratio all-digital sub-harmonically injection-locked PLL with chaotic injection timing technique,” M.S. thesis, Dept. Elect. Eng., National Central Univ., Taoyuan City, Taiwan (R.O.C.), 2015.
[114]C.-Y. Chang, “A 0.5 V all digital crystal-less clock generator with temperature compensation,” M.S. thesis, Dept. Elect. Eng., National Central Univ., Taoyuan City, Taiwan (R.O.C.), 2015.
[115]Y.-H. Tu, J.-C. Liu, K.-H. Cheng, H.-Y. Huang, C.-C. Hu, “A 0.6-V 1.6-GHz 8-phase all digital PLL using multi-phase based TDC,” IEICE Electron. Express, vol.13, no. 2, pp. 1–12, Feb. 2016.
[116]H.-Y. Huang, W.-C. Hung, H.-W. Cheng and C.-H. Lu, “All digital time-to-digital converter with high resolution and wide detect range,” Eng. Lett., vol.19, no. 3, pp. 261–264, Aug. 2011
[117]V. D. Smedt, P. D. Wit, W. Vereecken, and M. S. J. Steyaert, “A 66 uW 86ppm/°C ful-ly-integrated 6 MHz wienbridge oscillator with a 172 dB phase noise FOM,” IEEE J. Solid-State Circuits, vol.44, no. 7, pp. 1990–2001, Jul. 2009.
[118]K. Tsubaki, T. Hirose, N. Kuroki, and M. Numa, “A 32.55-kHz, 472-nW, 120ppm/°C on chip, variation tolerant CMOS relaxation oscillator for a real-time clock application,” in Proc. IEEE European Solid-State Circuits Conf., Sep. 2013, pp. 315–318
[119]W.-H. Sung, S.-Y. Hsu, J.-Y. Yu, C.-Y. Yu, and C.-Y Lee, “A frequency accuracy enhanced sub-10μW on-chip clock generator for energy efficient crystal-less wireless biotelemetry application,” in Proc. IEEE Symp. On VLSI, Jun. 2010, pp. 115–116.
[120]K. Choe, O. D. Bernal, D. Nuttman, and M. Je, “A precision relaxation oscillator with a self-clocked offset-cancellation scheme for implantable biomedical SoCs,” in IEEE Int. ISSCC Dig. Tech. Papers, Feb. 2009, pp. 402–403.
[121]Y. Tokunaga, S. Sakiyama, A. Matsumoto, and S. Dosho, “An on-chip CMOS relaxation oscillator with power averaging feedback using a reference proportional to supply voltage,” in IEEE Int. ISSCC Dig. Tech. Papers, Feb. 2009, pp. 404–405. |