博碩士論文 105521001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:70 、訪客IP:3.149.254.180
姓名 黃謙羽(Chien-Yu Huang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 量子點奈米線在室溫下之ZT值優化
(Optimizing thermoelectric efficiency of quantum dot nanowires at room temperature)
相關論文
★ 矽鍺/矽異質接面動態臨界電壓電晶體及矽鍺源/汲極結構之研製★ 量子點的電子能階
★ 應用於數位電視頻帶之平衡不平衡轉換器設計★ 單電子電晶體之元件特性模擬
★ 半導體量子點之穿隧電流★ 有機非揮發性記憶體之量測與分析
★ 鍺奈米線與矽奈米線電晶體之研製★ 選擇性氧化複晶矽鍺奈米結構形成鍺量子點及在單電子電晶體之應用
★ 以微控制器為基礎的智慧型跑步機系統研製★ 單電子電晶體耦合量子點的負微分電導效應
★ 單電子電晶體的熱電效應★ 多量子點系統之熱電效應
★ 多量子點系統之熱整流效應★ 單電子電晶體在有限溫度下的模擬
★ 分子電晶體之穿隧電流與熱電效應★ 串接耦合量子點之熱電特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文探討量子點奈米線系統ZT值在室溫下的優化。我們考慮的系統為量子點奈米線和金屬電極的接面系統,該系統可以利用量子力學的二次量化算符來建構,除此之外,系統的熱電係數可以利用格林函數來計算。我們發現在室溫k_B T=25meV,且量子點能階和電極費米能階差Δ=60meV時,可以得到最佳化的功率因子。這優化條件在電子躍遷強度與溫度的比值,滿足t_c⁄(k_B T)≤0.5的情況,且和量子點的數量無關,也就是說,PF和奈米線長度幾乎無關。在量子點間的強躍遷強度(即弱的電子庫倫力)情況,我們可以在奈米線直徑D=3nm的條件下,得到室溫k_B T=25meV,ZT>3。
摘要(英) This thesis investigates the optimization of figure of merit of quantum dot nanowire junction system connected to metallic electrodes at room temperature. The Anderson model is used to simulate the system Hamiltonian. The thermoelectric coefficients are calculated in the framework of Green’s functions. We have obtained the maximum power factors at room temperature when Δ/k_B T=2.4 and Γ=2t_c, where Δ=E_0-E_F is the energy difference between the QD energy levels and Fermi energy of electrodes. Γ and t_c denote, respectively, the electron tunneling rates and hopping strengths. We note that power factor is almost independent on the QD numbers. ZT>3 can be achieved for a Si/Ge QD superlattice nanowire with diameter D=3nm.
關鍵字(中) ★ 量子點
★ 奈米線
★ ZT
★ 室溫
關鍵字(英) ★ Quantum dot
★ nanowire
★ ZT
★ room temperature
論文目次 目錄
第一章、 導論 1
1-1:前言 1
1-2:熱電效應 1
1-3:文獻回顧 4
1-4:研究動機 6
第二章、 系統模型與公式推導 7
2-1:前言 7
2-2:系統模型 7
2-3:電流及熱流 10
2-4:格林函數分析 11
2-5:Figure of merit及熱電係數定義 14
第三章、 優化量子點陣列奈米線系統在室溫下的ZT值之數值分析 17
3-1:前言 17
3-2:量子點奈米線之聲子熱導 17
3-3:雙量子點奈米線系統的PF行為 19
3-3-1:Nt≤1區間的Ge、S、PF分析 21
3-4:增加量子點數量對Ge、 S、PF有何影響 23
3-4-1:量子點數量對Ge的影響 25
3-5:含有25個量子點的奈米線系統的Ge、S、PF分析 26
3-6:溫度對聲子熱導的影響 27
3-7:電子躍遷力和穿隧效率對ZT值的影響在N=25,L=127nm的情況 28
第四章、 結論 31
參考文獻 33
參考文獻 參考文獻
[1.1] E. Velmre, “Thomas Johann Seebeck and his contribution to the modern science and technology”, Electronics Conference (BEC), 2010 12th Biennial Baltic, Tallinn(2010).
[1.2] Y. G. Gurevich and G. N. Logvinov, "Physics of thermoelectric cooling," Semicond. Sci. Technol. 20, R57 (2005).
[1.3] A. F. Ioffe, Semiconductor thermoelements and thermoelectric cooling, (Infosearch Limited, London, 1957).
[1.4] H. J. Goldsmid and R. W. Douglas, "The use of semiconductors in thermoelectric refrigeration," Br. J. Appl. Phys. 5, 386 (1954).
[1.5] H. J. Goldsmid, A. R. Sheard, and D. A. Wright, "The performance of bismuth telluride thermojunctions," Br. J. Appl. Phys. 9, 365 (1958).
[1.6] L. D. Hicks and M. S. Dresselhaus, "Thermoelectric figure of merit of a one-dimensional conductor," Phys. Rev. B 47, 16631 (1993).
[1.7] L. D. Hicks and M. S. Dresselhaus, "Effect of quantum-well structures on the thermoelectric figure of merit," Phys. Rev. B 47, 12727 (1993).
[1.8] L. D. Hicks, T. C. Harman, X. Sun, and M. S. Dresselhaus, "Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit," Phys. Rev. B 53, R10493 (1996).
[1.9] R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O′Quinn, "Thin-film thermoelectric devices with high room-temperature figures of merit," Nature 413, 597 (2001).
[1.10] B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen, and Z. Ren, "High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys," Science 320, 634 (2008).
[1.11] J. Zhou, Y. Wang, J. Sharp, and R. Yang, "Optimal thermoelectric figure of merit in Bi2Te3/Sb2Te3 quantum dot nanocomposites," Phys. Rev. B 85, 115320 (2012).
[2.1] Y. Meir and N. S. Wingreen, “Landauer formula for the current through an interacting electron region” ,Phys. Rev. Lett. 68, 2512(1992).
[2.3] D. M.-T. Kuo and Y. C. Chang, “Thermoelectric and thermal rectification properties of quantum dot junctions” ,Phys. Rev. B 81, 205321(2010).
[2.4] D. M.-T. Kho, S. Y. Shiau and Y. C. Chang, “Theory of spin blockade, charge ratchet effect, and thermoelectrical behavior in serially coupled quantum dot system” ,Phys . Rev. B 84, 245303 (2011).
[2.5] P. Pals and A. MacKinnon, “Coherent tunneling through two quantum dots with Coulomb interaction”,Condens. Matter, 8, 5401 (1996).
[2.6] Y. C. Chang and D. M. T. Kuo, “Theory of charge transport in a quantum dot tunnel junction with multiple energy levels”, Phys. Rev. B, 77, 245412 (2008).
[3.1] R. K. Chen, A. I. Hochbaum, P. Murphy, J. Moore, P. D.Yang, and A. Majumdar, “Thermal Conductance of Thin Silicon Nanowires”, Phys. Rev. Lett. 101, 105501 (2008).
[3.2] P. Murphy, S. Mukerjee, and J. Moore, “Optimal thermoelectric figure of merit of a molecular junction”, Phys. Rev. B 78,161406(R) (2008).
[3.3] Ming Hu and Dimos Poulikakos, “Si/Ge Superlattice Nanowires with Ultralow Thermal Conductivity”, Nano Lett. 12, 5487(2012).
[3.4] D. L. Nika, E. P. Pokatilov, A. A. Balandin, V. M. Fomin, A. Rastelli, and O. G. Schmidt, “Reduction of lattice thermal conductivity in one-dimensional quantum-dot superlattices due to phonon filtering”, Phys. Rev. B 84, 165415(2011).
[3.5] A. J. Minnich, M. S. Dresselhaus, Z. F. Ren and G. Chen, “Bulk nanostructured thermoelectric materials: current research and future prospects”, Energy Environ Sci, 2, 466(2009).
[3.6] P. Murphy, S. Mukerjee, and J. Moore, “Optimal thermoelectric figure of merit of a molecular junction”, Phys. Rev. B 78,161406(R) (2008).
[3.7] P. Trocha and J. Barnas, “Large enhancement of thermoelectric effects in a double quantum dot system due to interference and Coulomb correlation phenomena”, Phys. Rev. B 85, 085408 (2012).
[3.8] J. H. Lee, J. W.Lim, and P. D. Yang, “ Ballistic Phonon Transport in Holey Holey Silicon”, Nano Lett.15, 3273 (2015).
[3.9] T. Zhu and E. Ertekin. “Generalized Debye-Peierls/Allen-Feldman model for the lattice thermal conductivity of low-dimensional and disordered materials”, Phys. Rev. B 93, 155414 (2016).
[4.1] D. M. T. Kuo, C. C. Chen and Yia-Chung Chang, “Large enhancement in thermoelectric efficiency of quantum dot junction to increase of level degeneracy”, Phys. Rev. B 95, 075432(2017).
指導教授 郭明庭(David kuo) 審核日期 2018-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明