博碩士論文 104521078 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:70 、訪客IP:18.222.182.29
姓名 簡子涵(Tzu-Han Chien)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 W頻帶40奈米金氧半場效應電晶體低雜訊放大器暨Ka頻帶砷化鎵功率放大器之研製
(Design of 40nm CMOS W-band Low Noise Amplifier and GaAs Ka-band Power Amplifier)
相關論文
★ 微波及毫米波切換器及四相位壓控振盪器整合除三 除頻器之研製★ 微波低相位雜訊壓控振盪器之研製
★ 高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統★ 砷化鎵高速電子遷移率之電晶體微波/毫米波放大器設計
★ 微波及毫米波行進波切換器之研製★ 寬頻低功耗金氧半場效電晶體 射頻環狀電阻性混頻器
★ 微波與毫米波相位陣列收發積體電路之研製★ 24 GHz汽車防撞雷達收發積體電路之研製
★ 低功耗低相位雜訊差動及四相位單晶微波積體電路壓控振盪器之研究★ 高功率高效率放大器與振盪器研製
★ 微波與毫米波寬頻主動式降頻器★ 微波及毫米波注入式除頻器與振盪器暨射頻前端應用
★ 寬頻主動式半循環器與平衡器研製★ 雙閘極元件模型與微波及毫米波分佈式寬頻放大器之研製
★ 銻化物異質接面場效電晶體之研製及其微波切換器應用★ 微波毫米波寬頻振盪器與鎖相迴路之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文設計研製收發機前端之低雜訊放大器及功率放大器,包含兩個W頻帶的低雜訊放大器及三個Ka頻帶的功率放大器。第二章首先使用TSMC 40nm General Purpose CMOS前瞻製程設計三級疊接低雜訊放大器,因其平行版式電容容值因製程變異改變巨大,達到60.8%,改版後將電容設計改成指叉式減少容值改變,亦使用分佈式電容為直流旁路電容。量測時,電流為模擬的三倍,亦將架構改成共源極以減少其功率消耗。實現一六級共源極低雜訊放大器,小訊號增益達到21.6 dB,3 dB頻寬為87~100.6 GHz,頻率在87及97 GHz時有最小雜訊指數7 dB,增益頻寬積為163.5 GHz,晶片面積為0.56 mm2。
第三章使用穩懋 0.15 μm InGaAs製程設計一個Ka頻帶雙功率整合功率放大器,使用雙整合技術來作功率整合,第一級增益單元串聯一組RC並聯來改善穩定度,第二級則兩兩電晶體合併,共合併四顆電晶體,輸出匹配電容較小故設計指叉式電容以因應小電容易受製程變異影響之特性。另介紹放大器穩定度檢查電路,除了檢查單級放大器的K值,檢查多級放大器穩定度時作級間穩定度模擬,以及檢查大功率電路穩定度的非線性穩定度模擬。其量測得小訊號增益13.9 dB,輸入1 dB增益壓縮點(IP1dB)約為5 dBm,而輸出1 dB增益壓縮點(OP1dB)約為17.7 dBm,飽和功率(Psat) 為24 dBm,功率消耗為1518 mW,晶片面積為4.6 mm2。
在第四章,我們分析疊接架構,推導其共閘極電晶體之閘極旁路電容容值,並設計兩種不同佈局方式的疊接放大器。其量測結果分別為,疊接一功率放大器,小訊號增益4.5 dB,輸入1 dB增益壓縮點(IP1dB)約為16 dBm,而輸出1 dB增益壓縮點(OP1dB)約為17.8 dBm,飽和功率(Psat) 為18 dBm,功率消耗為765 mW。疊接二功率放大器,小訊號增益5.2 dB,輸入1 dB增益壓縮點(IP1dB)約為17 dBm,而輸出1 dB增益壓縮點(OP1dB)約為19.3 dBm,飽和功率(Psat) 為19.5 dBm,功率消耗為740 mW。
摘要(英) In this paper, we introduce the design of low noise amplifiers (LNA) and power amplifiers (PA). Including two w-band low noise amplifiers, and three ka-band power amplifiers. First, a w-band cascode three stages LNA using TSMC 40nm General Purpose CMOS process is presented, because the parallel capacitor varied greatly up to 60.8% by process varation. The interdigitated capacitor is used in the next version to prevent capacitance changing. The construction is changed from cascode three stages to common source (CS) six stages to improve the measurement results of current, which is three times than the simulation results. The six stages LNA exhibits 21.6 dB gain, 3 dB BW from 87 to 100.6 GHz, a minimum noise of 7 dB at 87 and 97 GHz, and a GBP of 163.5 GHz. The chip size of the six stages LNA is 0.56 mm2.
In chapter 3, a ka-band binary combine power using WIN 0.15 μm InGaAs procss is presented. The first stage series a RC in parallel to improce stability. The second stage combines 4 FETs by binary combine. The interdigitated capacitor is used in output matching to prevent the capacitance varation by its small capacitance. The stability check schematics are summarized, including stability K, inter stage stability, and non-linear stability. The PA exhibits 13.9 dB gain, the output power at 1 dB gain compression point is 17.7 dBm, and 24-dBm saturation output power. The chip size of the PA is 4.6 mm2.
Analysis, design and measured results for cascode PA in chapter 4. The gate bypass capacitor of common gate FET is introduced. Comparison of two types cascode PA layout is presented. The first cascode PA exhibits 4.5 dB gain, the output power at 1 dB gain compression point is 18 dBm, and 765 mW power comsumption. The second cascode PA exhibits 5.2 dB gain, the output power at 1 dB gain compression point is 19.3 dBm, and 740 mW power comsumption.
關鍵字(中) ★ 低雜訊放大器
★ 功率放大器
★ 毫米波
★ 微波
關鍵字(英)
論文目次 摘要 I
Abstract III
目錄 V
圖目錄 VII
表目錄 XII
第1章 緒論 1
1.1 研究動機及背景 1
1.2 現況研究及發展 1
1.3 論文貢獻 2
1.4 論文架構 2
第2章 W頻段低雜訊放大器 3
2.1 簡介 3
2.2 TSMC 40 nm製程簡介 4
2.3 三級疊接低雜訊放大器 5
2.3.1 電路設計 5
2.3.2 電路量測結果 13
2.3.3 分析結果與討論 19
2.4 六級共源極低雜訊放大器 20
2.4.1 電路設計 20
2.4.2 電路量測結果 26
2.4.3 分析結果與討論 34
2.5 總結 34
第3章 Ka頻段功率放大器 36
3.1 簡介 36
3.2 WIN 0.15 μm InGaAs製程介紹 37
3.3 功率放大器設計 37
3.4 穩定度模擬 46
3.5 功率放大器量測結果 52
3.6 總結 59
第4章 Ka頻段功率放大器疊接佈局方式之比較 63
4.1 簡介 63
4.2 WIN 0.1 μm GaAs製程介紹 63
4.3 疊接架構設計分析[35]-[37] 63
4.4 疊接一功率放大器設計與量測 65
4.4.1 疊接一功率放大器設計 65
4.4.2 疊接一功率放大器量測結果 74
4.5 疊接二功率放大器設計與量測 80
4.5.1 疊接二功率放大器設計 80
4.5.2 疊接二功率放大器量測結果 84
4.6 總結 88
第5章 結論 90
參考文獻 92
參考文獻 [1] M. Khanpour et al., “A wideband W-band receiver front-end in 65nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 8, Aug. 2008, pp. 1717-1730.
[2] Sarkas, E. Laskin, J. Hasch, A. Tomkins, A. Balteanu, E. Dacquay, L. Tarnow, P. Chevalier, B. Sautreuil, and S. P. Voinigescu, “Siliconbased radar and imaging sensors operating above 120 GHz,” in IEEE MiKON Dig., May 2012, pp. 91–96.
[3] W. H. Chen, G. Liu, B. Zdravko, and A. M. Niknejad, “A highly linear broadband CMOS LNA employing noise and distortion cancellation,” IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1164-1176, May. 2008.
[4] H. V. Le et al., “A 77 GHz CMOS low noise amplifier for automotive radar receiver,” IEEE Radar-Frequency Integration Technology (RFIT), 2012, pp. 174-176.
[5] L. Zhou et al., “A W-band CMOS receiver chipset for millimeter-wave radiometer systems,” IEEE J. Solid-State Circuits, vol. 46, no. 2, Feb. 2011, pp. 378-391.
[6] A. Tomlins et al., “A passive W-band imaging receiver in 65-nm bulk CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 10, Feb. 2010, pp. 1981-1991.
[7] D. Sandstrom, M. Varonen, M. Karkkainen, K. A. I. Halonen, "W-band CMOS amplifiers achieving 10 dBm saturated output power and 7.5 dB NF", IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3403-3409, 2009.
[8] D. Pepe, and D. Zito, “32dB gain 28nm bulk CMOS W-band LNA,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 1, Jan. 2015.
[9] J. Borremans, P. Wambacq, C. Soens, Y. Rolain, and K. Kuijk, “Low-area active-feedback low-noise amplifier design in scaled digital CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 11, pp. 2422-2433, Nov. 2008.
[10] B. Afshar and A. M. Niknejad, “A robust 24 mW 60 GHz receiver in 90 nm standard CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2008, pp. 182–183.
[11] K. Kang, F. Lin, D.-D. Pham, J. Brinkhoff, C.-H. Heng, Y. X. Guo, and X. Yuan, “A 60-GHz OOK receiver with an on-chip antenna in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 9, pp. 1720–1731, Sep. 2010.
[12] K. Okada et al., “A 60-GHz 16QAM/8PSK/QPSK/BPSK direct-conversion transceiver for IEEE 802.15.3c,” IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 2988–3004, Dec. 2011.
[13] W. H. Doherty, “A new high efficiency power amplifier for modulated waves,” Proc. IRE, vol. 24, Sep. 1936, pp. 1163–1182.
[14] J. C. Park, J. G. Yook, Y. D. Kim and C. H. Lee, “Dual-band switching Doherty power amplifier using phase shifter composed of PIN diode,” Microwave Integrated Circuits Conference (EuMIC), 2011 European, Manchester, 2011, pp. 300–303.
[15] M. Hayakawa, K. Shiikuma, and T. Kaneko, “A total bandwidth expanded dual-band GaN Doherty PA toward the LTE-A carrier aggregation application,” IEEE Compound Semi. IC Symp. (CSICS), Oct. 2013, pp. 1–4.
[16] X. A. Nghiem, J. Guan, and R. Negra, “Design of a broadband three-way sequential Doherty power amplifier for modern wireless communications,” in IEEE MTT-S Int. Microw. Symp. Dig., 2014 pp. 1–4.
[17] C. Y. Law and A.-V. Pham, “A high gain 60 GHz power amplifier with 20 dBm output power in 90 nm CMOS,” in Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2010, pp. 426–427.
[18] J.-W. Lai and A. Valdes-Garcia, “A 1 V 17.9 dBm 60 GHz power amplifier in standard 65 nm CMOS,” in Int. Solid-State Circuits Conf. Tech. Dig., pp. 424–425, Feb. 2010.
[19] V. H. Do, V. Subramanian, W. Keusgen and G. Boeck, "A 60 GHz SiGe-HBT power amplifier with 20% PAE at 15 dBm output power," in IEEE Microwave and Wireless Components Letters, vol. 18, no. 3, pp. 209-211, March 2008.
[20] M. Bohsali and A. M. Niknejad, “Current combining 60 GHz CMOS power amplifiers,” in RFIC Symp., May 2009, pp. 31–34.
[21] U. R. Pfeiffer and D. Goren, “A 23-dBm 60-GHz distributed active transformer in a silicon process technology,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 5, May 2007, pp. 857–865.
[22] Y.-N. Jen, J.-H. Tsai, T.-W. Huang, and H. Wang, “Design and analysis of a 55–71 GHz compact and broadband distributed active transformer power amplifier in 90-nm CMOS process,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 7, Jul. 2009, pp. 1637–1646.
[23] D. Sandstrom, B. Martineau,M. Varonen,M. Karkkainen, A. Cathelin, and K. A. I.Halonen, “94GHz power-combining power amplifier with 13 dBm saturated output power in 65 nm CMOS,” in IEEE RFIC Symp., pp. 1–4, Jun. 2011
[24] Y. C. Lee and C. S. Pard, “17–36 GHz broadband PHEMT MMIC power amplifier for point-to-multipoint applications,” in Proc. Int.Conf. Solid-State and Integrated Circuits, 2001, vol. 2, pp. 1320–1323.
[25] Y. Sasaki, H. Kurusu, H. Hoshi, T. Hisakaa, and Y. Mitsui, “20–30GHz broadband MMIC power amplifiers with compact flat gain PHEMT cells,” in IEEE Int. Microwave Symp. Dig., 2001, vol. 2, pp.1067–1070.
[26] M.-C. Chuang, P.-S. Wu, M.-F. Lei, and H. Wang, “A miniature15–50-GHz medium power amplifier,” in IEEE Radio Frequency Integrated Circuits Symp. Dig., Jun. 11–13, 2006, pp. 471–474.
[27] M.-C. Chuang, M.-F. Lei, and H.Wang, “A broadband medium power amplifier for millimeter-wave applications,” in IEEE Asia-Pacific Conf., Proc., 2005, vol. 3, pp. 1593–1595.
[28] C. Campbell et al., "A wideband power amplifier MMIC utilizing GaN on SiC HEMT technology," IEEE J Solid-State Circuits, vol. 44, no. 10, Oct. 2009, pp. 2640-2647.
[29] J. Komiak et al., "Decade bandwidth 2 to 20 GHz GaN HEMT power amplifier MMICs in DFP and no FP technology," IEEE MTT-S Int. Microw. Symp. Dig., pp. 1-4, Jun. 5-10, 2011.
[30] P. C. Huang, Z. M. Tsai, K. Y. Lin, and H. Wang, “17–35 GHz broadband, high efficiency pHEMT power amplifier using synthesized transformer matching technique,” in IEEE MTT, 2012, vol. 60, pp. 112-119.
[31] K. Datta, J. Roderick, H. Hashemi, "A triple-stacked ClassE mm-wave SiGe HBT power amplifier," in IEEE Int. Microw. Symp. Dig. (IMS), pp.1-3, June 2013.
[32] D. P. Nguyen, T. Pham, B. L. Pham, and A.-V. Pham, “A high efficiency high power density harmonic-tuned Ka-band stacked-FET GaAs power amplifier,” in Proc. IEEE Compound Semiconductor Integr. Circuit Symp. (CSICS), Oct. 2016, pp. 1–4.
[33] D. P. Nguyen, A. Pham, "An ultra compact watt-level Ka-band stacked-FET power amplifier," IEEE Microw. Wireless Comp. Lett., vol.26, no.7, pp. 516-518, July 2016.
[34] C. C. Shen, H. Y. Chang and G. D. Vendelin, "Comparison of enhancement- and depletion-mode triple stacked power amplifiers in 0.5 μm AlGaAs/GaAs PHEMT technology," 2009 European Microwave Integrated Circuits Conference (EuMIC), Rome, 2009, pp. 222-225.
[35] M. Balducci, S. Chartier and H. Schumacher, "A Ka-band low power and high-efficiency differential power amplifier in 0.25-μm BiCMOS”, in INMMIC, Graz, 2017, pp. 1-3.
[36] D. P. Nguyen, T. Pham, B. L. Pham, A. V. Pham, "A high efficiency high power density harmonic-tuned Ka-band stacked-FET GaAs power amplifier", Proc. IEEE Compound Semiconductor Integr. Circuit Symp. (CSICS), pp. 1-4, Oct. 2016.
[37] S. Pornpromlikit, J. Jeong, C. D. Presti, A. Scuderi and P. M. Asbeck, "A watt-level stacked-FET linear power amplifier in silicon-on-insulator CMOS," in IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 1, pp. 57-64, Jan. 2010.
[38] S. Li, D. Fritsche, C. Carta and F. Ellinger, "Design and characterization of a 12–40 GHz power amplifier in SiGe technology," 2018 IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications (PAWR), Anaheim, CA, 2018, pp. 23-25.
指導教授 張鴻埜 審核日期 2018-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明