參考文獻 |
[1] M. Khanpour et al., “A wideband W-band receiver front-end in 65nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 8, Aug. 2008, pp. 1717-1730.
[2] Sarkas, E. Laskin, J. Hasch, A. Tomkins, A. Balteanu, E. Dacquay, L. Tarnow, P. Chevalier, B. Sautreuil, and S. P. Voinigescu, “Siliconbased radar and imaging sensors operating above 120 GHz,” in IEEE MiKON Dig., May 2012, pp. 91–96.
[3] W. H. Chen, G. Liu, B. Zdravko, and A. M. Niknejad, “A highly linear broadband CMOS LNA employing noise and distortion cancellation,” IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1164-1176, May. 2008.
[4] H. V. Le et al., “A 77 GHz CMOS low noise amplifier for automotive radar receiver,” IEEE Radar-Frequency Integration Technology (RFIT), 2012, pp. 174-176.
[5] L. Zhou et al., “A W-band CMOS receiver chipset for millimeter-wave radiometer systems,” IEEE J. Solid-State Circuits, vol. 46, no. 2, Feb. 2011, pp. 378-391.
[6] A. Tomlins et al., “A passive W-band imaging receiver in 65-nm bulk CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 10, Feb. 2010, pp. 1981-1991.
[7] D. Sandstrom, M. Varonen, M. Karkkainen, K. A. I. Halonen, "W-band CMOS amplifiers achieving 10 dBm saturated output power and 7.5 dB NF", IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3403-3409, 2009.
[8] D. Pepe, and D. Zito, “32dB gain 28nm bulk CMOS W-band LNA,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 1, Jan. 2015.
[9] J. Borremans, P. Wambacq, C. Soens, Y. Rolain, and K. Kuijk, “Low-area active-feedback low-noise amplifier design in scaled digital CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 11, pp. 2422-2433, Nov. 2008.
[10] B. Afshar and A. M. Niknejad, “A robust 24 mW 60 GHz receiver in 90 nm standard CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2008, pp. 182–183.
[11] K. Kang, F. Lin, D.-D. Pham, J. Brinkhoff, C.-H. Heng, Y. X. Guo, and X. Yuan, “A 60-GHz OOK receiver with an on-chip antenna in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 9, pp. 1720–1731, Sep. 2010.
[12] K. Okada et al., “A 60-GHz 16QAM/8PSK/QPSK/BPSK direct-conversion transceiver for IEEE 802.15.3c,” IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 2988–3004, Dec. 2011.
[13] W. H. Doherty, “A new high efficiency power amplifier for modulated waves,” Proc. IRE, vol. 24, Sep. 1936, pp. 1163–1182.
[14] J. C. Park, J. G. Yook, Y. D. Kim and C. H. Lee, “Dual-band switching Doherty power amplifier using phase shifter composed of PIN diode,” Microwave Integrated Circuits Conference (EuMIC), 2011 European, Manchester, 2011, pp. 300–303.
[15] M. Hayakawa, K. Shiikuma, and T. Kaneko, “A total bandwidth expanded dual-band GaN Doherty PA toward the LTE-A carrier aggregation application,” IEEE Compound Semi. IC Symp. (CSICS), Oct. 2013, pp. 1–4.
[16] X. A. Nghiem, J. Guan, and R. Negra, “Design of a broadband three-way sequential Doherty power amplifier for modern wireless communications,” in IEEE MTT-S Int. Microw. Symp. Dig., 2014 pp. 1–4.
[17] C. Y. Law and A.-V. Pham, “A high gain 60 GHz power amplifier with 20 dBm output power in 90 nm CMOS,” in Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2010, pp. 426–427.
[18] J.-W. Lai and A. Valdes-Garcia, “A 1 V 17.9 dBm 60 GHz power amplifier in standard 65 nm CMOS,” in Int. Solid-State Circuits Conf. Tech. Dig., pp. 424–425, Feb. 2010.
[19] V. H. Do, V. Subramanian, W. Keusgen and G. Boeck, "A 60 GHz SiGe-HBT power amplifier with 20% PAE at 15 dBm output power," in IEEE Microwave and Wireless Components Letters, vol. 18, no. 3, pp. 209-211, March 2008.
[20] M. Bohsali and A. M. Niknejad, “Current combining 60 GHz CMOS power amplifiers,” in RFIC Symp., May 2009, pp. 31–34.
[21] U. R. Pfeiffer and D. Goren, “A 23-dBm 60-GHz distributed active transformer in a silicon process technology,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 5, May 2007, pp. 857–865.
[22] Y.-N. Jen, J.-H. Tsai, T.-W. Huang, and H. Wang, “Design and analysis of a 55–71 GHz compact and broadband distributed active transformer power amplifier in 90-nm CMOS process,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 7, Jul. 2009, pp. 1637–1646.
[23] D. Sandstrom, B. Martineau,M. Varonen,M. Karkkainen, A. Cathelin, and K. A. I.Halonen, “94GHz power-combining power amplifier with 13 dBm saturated output power in 65 nm CMOS,” in IEEE RFIC Symp., pp. 1–4, Jun. 2011
[24] Y. C. Lee and C. S. Pard, “17–36 GHz broadband PHEMT MMIC power amplifier for point-to-multipoint applications,” in Proc. Int.Conf. Solid-State and Integrated Circuits, 2001, vol. 2, pp. 1320–1323.
[25] Y. Sasaki, H. Kurusu, H. Hoshi, T. Hisakaa, and Y. Mitsui, “20–30GHz broadband MMIC power amplifiers with compact flat gain PHEMT cells,” in IEEE Int. Microwave Symp. Dig., 2001, vol. 2, pp.1067–1070.
[26] M.-C. Chuang, P.-S. Wu, M.-F. Lei, and H. Wang, “A miniature15–50-GHz medium power amplifier,” in IEEE Radio Frequency Integrated Circuits Symp. Dig., Jun. 11–13, 2006, pp. 471–474.
[27] M.-C. Chuang, M.-F. Lei, and H.Wang, “A broadband medium power amplifier for millimeter-wave applications,” in IEEE Asia-Pacific Conf., Proc., 2005, vol. 3, pp. 1593–1595.
[28] C. Campbell et al., "A wideband power amplifier MMIC utilizing GaN on SiC HEMT technology," IEEE J Solid-State Circuits, vol. 44, no. 10, Oct. 2009, pp. 2640-2647.
[29] J. Komiak et al., "Decade bandwidth 2 to 20 GHz GaN HEMT power amplifier MMICs in DFP and no FP technology," IEEE MTT-S Int. Microw. Symp. Dig., pp. 1-4, Jun. 5-10, 2011.
[30] P. C. Huang, Z. M. Tsai, K. Y. Lin, and H. Wang, “17–35 GHz broadband, high efficiency pHEMT power amplifier using synthesized transformer matching technique,” in IEEE MTT, 2012, vol. 60, pp. 112-119.
[31] K. Datta, J. Roderick, H. Hashemi, "A triple-stacked ClassE mm-wave SiGe HBT power amplifier," in IEEE Int. Microw. Symp. Dig. (IMS), pp.1-3, June 2013.
[32] D. P. Nguyen, T. Pham, B. L. Pham, and A.-V. Pham, “A high efficiency high power density harmonic-tuned Ka-band stacked-FET GaAs power amplifier,” in Proc. IEEE Compound Semiconductor Integr. Circuit Symp. (CSICS), Oct. 2016, pp. 1–4.
[33] D. P. Nguyen, A. Pham, "An ultra compact watt-level Ka-band stacked-FET power amplifier," IEEE Microw. Wireless Comp. Lett., vol.26, no.7, pp. 516-518, July 2016.
[34] C. C. Shen, H. Y. Chang and G. D. Vendelin, "Comparison of enhancement- and depletion-mode triple stacked power amplifiers in 0.5 μm AlGaAs/GaAs PHEMT technology," 2009 European Microwave Integrated Circuits Conference (EuMIC), Rome, 2009, pp. 222-225.
[35] M. Balducci, S. Chartier and H. Schumacher, "A Ka-band low power and high-efficiency differential power amplifier in 0.25-μm BiCMOS”, in INMMIC, Graz, 2017, pp. 1-3.
[36] D. P. Nguyen, T. Pham, B. L. Pham, A. V. Pham, "A high efficiency high power density harmonic-tuned Ka-band stacked-FET GaAs power amplifier", Proc. IEEE Compound Semiconductor Integr. Circuit Symp. (CSICS), pp. 1-4, Oct. 2016.
[37] S. Pornpromlikit, J. Jeong, C. D. Presti, A. Scuderi and P. M. Asbeck, "A watt-level stacked-FET linear power amplifier in silicon-on-insulator CMOS," in IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 1, pp. 57-64, Jan. 2010.
[38] S. Li, D. Fritsche, C. Carta and F. Ellinger, "Design and characterization of a 12–40 GHz power amplifier in SiGe technology," 2018 IEEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications (PAWR), Anaheim, CA, 2018, pp. 23-25. |