博碩士論文 105521006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:18.117.81.240
姓名 徐昱璿(Yu-Hsuan Hsu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 N型鎂矽錫合金及其熱電模組研究
(Thermoelectric Module Properties of N-type Mg2(Si,Sn)Alloy)
相關論文
★ 以熱熔異質磊晶成長法製造之鍺光偵測器★ 在SOI基板上以快速熱熔法製造高品質鍺及近紅外線光偵測元件之研製
★ 鉭錳合金及銅鍺化合物應用於積體電路後段製程中銅導線之研究★ 快速熱熔磊晶成長法製造側向PIN(Ge-Ge-Si)光偵測器
★ 二維薄膜及三維塊材Seebeck係數量測★ 塊材、薄膜與奈米線之熱導係數量測方法探討
★ 以快速熱熔異質磊晶成長法製作鍺矽累增型光偵測器★ 以快速熱熔融磊晶成長法製作 鍺錫合金PIN型光偵測器
★ 利用火花電漿燒結法製備以矽為基底之奈米材料於熱電特性上之應用研究★ P型金屬氧化物薄膜的製備應用於軟性電子
★ 金屬氧化物製備應用於軟性電子元件★ 超導材料釔鋇銅氧化物熱電特性量測分析
★ 鎂矽錫合金熱電特性研究及應用★ 矽基熱電模組開發及特性研究
★ P型金屬氧化物與硫化物之研究★ 物聯網之熱感測器應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來全球暖化嚴重性急遽上升,地球環境及生態也因此不斷地改變,因此開發綠色能源逐漸被世人所重視,並積極地開發相關研究議題。我們知道綠能發電能減緩甚至改善地球生態劣化的程度,而其中熱電效應之應用為一種優秀的方式。熱電效應,一種熱能和電能能夠相互轉換的效應,其在環保上的價值非常高,可應用於廢熱回收、溫差發電、熱電致冷等。當中影響熱電效應的好壞主要取決於熱電材料本身具有的熱電優值(ZT),因此,致力提升ZT優值在熱電材料研究中最為重要。
本研究透過矽摻雜反應,製作出N/P type之奈米粉末,與鎂錫粉末加以混合後冷壓成塊材,再用不同溫度的環境做退火反應,評估出熱電特性最好的製程,最後使用其製程製備塊材來製作模組,並量測其熱電上之特性。
摘要(英) In these years, the power consumption has been reaching new records, consuming lots of energy from coal, gasoline, fuel, and nuclear. These energy resource has their own drawbacks, resulting in pollutions and hazardous substance. Due to the concern of environmental sustainability, clean energy is in demand and in dire need.
In this study, P and N-type nanopowders were prepared by mechanical grinding, followed by doping and mixing to obtain the designed composition. Then it was cold-pressed into ingots and annealed at different temperatures to study the thermoelectric properties. The thermoelectric module was made and measured to test its conversion efficiency.
關鍵字(中) ★ 鎂矽錫合金
★ 熱電材料
★ 熱電模組
★ ZT優值
關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章、 導論 - 1 -
1-1前言 - 1 -
1-2 熱電效應 - 2 -
1-3研究動機 - 3 -
第二章、 實驗方法與儀器 - 4 -
2-1 球磨矽粉末 - 4 -
2-2 混合粉末與摻雜 - 4 -
2-3 冷壓成塊材 - 4 -
2-4 加壓Cr、封管與退火 - 4 -
2-5組裝模組 - 4 -
2-6 量測儀器 - 5 -
2-6-1 Seebeck Coefficient量測 - 5 -
2-6-2 電導率量測 - 6 -
2-6-3 密度量測 - 7 -
2-6-4 熱擴散量測 - 8 -
2-6-5 比熱量測 - 9 -
2-6-6 熱導率量測 - 10 -
2-6-7 熱電優值(ZT figure of merit) - 10 -
2-6-8 粉末粒徑觀測 - 11 -
2-6-9 X光繞射分析(X-ray diffraction XRD) - 11 -
2-6-10 模組電性分析 - 12 -
第三章、 實驗流程與步驟 - 15 -
3-1 前言 - 15 -
3-2 實驗流程設計 - 16 -
3-3 實驗步驟 - 17 -
3-3-1 矽粉末球磨 - 17 -
3-3-2 N-type摻雜 - 20 -
3-3-3 混和Mg、Si、Sn粉末 - 23 -
3-3-4 冷壓成塊材 - 23 -
3-3-5 加壓Cr、封管與退火 - 25 -
3-3-6 組裝模組 - 26 -
第四章、 實驗結果與討論 - 28 -
4-1 前言 - 28 -
4-2 觀察與分析 - 29 -
4-2-1 SEM - 29 -
4-2-2 退火後塊材外觀 - 30 -
4-3 塊材之電導率與席貝克係數 - 36 -
4-3-1 150℃製程之塊材 - 37 -
4-3-2 200℃製程之塊材 - 40 -
4-3-3 250℃製程之塊材 - 44 -
4-3-4 300℃製程之塊材 - 48 -
4-4 加壓Cr粉末之塊材退火量測 - 52 -
4-4-1 Cr加壓厚度測試與量測 - 52 -
4-4-2 塊材加壓300 μm Cr、加額外錫之退火與量測 - 53 -
4-5 模組特性 - 61 -
第五章、 結論 - 63 -
參考文獻 - 65 -
參考文獻 1. Schaller, R.R., Moore′s law: past, present and future. IEEE spectrum, 1997. 34(6): p. 52-59.
2. KLECKNER, R.C., D.A. SAVITZ, and E.M. JOHN, Magnetic field exposure from electric appliances and childhood cancer. American Journal of Epidemiology, 1990. 131(5): p. 763-773.
3. Lam, P.-L. and A. Shiu, A data envelopment analysis of the efficiency of China’s thermal power generation. Utilities Policy, 2001. 10(2): p. 75-83.
4. Rashad, S. and F. Hammad, Nuclear power and the environment: comparative assessment of environmental and health impacts of electricity-generating systems. Applied Energy, 2000. 65(1-4): p. 211-229.
5. Tong, W., Wind power generation and wind turbine design. 2010: WIT press.
6. Kaltschmitt, M., W. Streicher, and A. Wiese, Hydroelectric Power Generation, in Renewable Energy. 2007, Springer. p. 349-383.
7. Green, M.A., Solar cells: operating principles, technology, and system applications. Englewood Cliffs, NJ, Prentice-Hall, Inc., 1982. 288 p., 1982.
8. Dragoman, D. and M. Dragoman, Giant thermoelectric effect in graphene. Applied Physics Letters, 2007. 91(20): p. 203116.
9. Liu, B.-T., K.-H. Chien, and C.-C. Wang, Effect of working fluids on organic Rankine cycle for waste heat recovery. Energy, 2004. 29(8): p. 1207-1217.
10. Dughaish, Z., Lead telluride as a thermoelectric material for thermoelectric power generation. Physica B: Condensed Matter, 2002. 322(1-2): p. 205-223.
11. DiSalvo, F.J., Thermoelectric cooling and power generation. Science, 1999. 285(5428): p. 703-706.
12. Xia, Y., et al., One?dimensional nanostructures: synthesis, characterization, and applications. Advanced materials, 2003. 15(5): p. 353-389.
13. Uchida, K., et al., Observation of the spin Seebeck effect. Nature, 2008. 455(7214): p. 778.
14. 黃柏年, 利用火花電漿燒結法製備以矽為基底之奈米材料於熱電特性上之應用研究; Si-based nanomaterials for thermoelectric applications by spark plasma sintering. 2016, 國立中央大學.
15. Flipse, J., et al., Direct observation of the spin-dependent Peltier effect. Nature nanotechnology, 2012. 7(3): p. 166.
16. Huang, M.-J., R.-H. Yen, and A.-B. Wang, The influence of the Thomson effect on the performance of a thermoelectric cooler. International Journal of Heat and Mass Transfer, 2005. 48(2): p. 413-418.
17. Nassiopoulou, A.G., V. Gianneta, and C. Katsogridakis, Si nanowires by a single-step metal-assisted chemical etching process on lithographically defined areas: formation kinetics. Nanoscale research letters, 2011. 6(1): p. 597.
18. Shen, Z., et al., Spark plasma sintering of alumina. Journal of the American Ceramic Society, 2002. 85(8): p. 1921-1927.
19. Lee, J.-H., G.A. Galli, and J.C. Grossman, Nanoporous Si as an efficient thermoelectric material. Nano letters, 2008. 8(11): p. 3750-3754.
20. Luo, W., et al., Fabrication and thermoelectric properties of Mg2Si1? xSnx (0? x? 1.0) solid solutions by solid state reaction and spark plasma sintering. Materials Science and Engineering: B, 2009. 157(1-3): p. 96-100.
21. Soni, R.K., et al., Thermoelectric Power Generator.
22. Fecht, H., et al., Nanocrystalline metals prepared by high-energy ball milling. Metallurgical Transactions A, 1990. 21(9): p. 2333.
23. Navratil, J., Z. Stary, and T. Plechacek, Thermoelectric properties of p-type antimony bismuth telluride alloys prepared by cold pressing. Materials research bulletin, 1996. 31(12): p. 1559-1566.
24. 黃俊杰, 鎂矽錫合金熱電特性研究及應用; Thermoelectric Properties of Mg2 (Si, Sn) Alloy. 2017, 國立中央大學.
25. 張江南, 四點探針之研發與製作; The Research and Develope and Manufacture of the Four-Point Probe. 財團法人國家實驗研究院科技政策研究與資訊中心, 1999.
26. Roman, P. and J.M. Gutierrez-Zorrilla, A quick method for determining the density of single crystals. Journal of Chemical Education, 1985. 62(2): p. 167.
27. dos Santos, W.N., P. Mummery, and A. Wallwork, Thermal diffusivity of polymers by the laser flash technique. Polymer testing, 2005. 24(5): p. 628-634.
28. Gill, P., T.T. Moghadam, and B. Ranjbar, Differential scanning calorimetry techniques: applications in biology and nanoscience. Journal of biomolecular techniques: JBT, 2010. 21(4): p. 167.
29. Ioffe, A.F., et al., Semiconductor thermoelements and thermoelectric cooling. Physics Today, 1959. 12: p. 42.
30. Hicks, L. and M.S. Dresselhaus, Thermoelectric figure of merit of a one-dimensional conductor. Physical review B, 1993. 47(24): p. 16631.
31. Goldstein, J.I., et al., Scanning electron microscopy and X-ray microanalysis. 2017: Springer.
32. 王威傑, 矽基熱電模組開發及特性研究; The Research and Development of Si-based Thermoelectric Modules. 2017, 國立中央大學.
指導教授 辛正倫(Cheng-Lun Hsin) 審核日期 2018-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明