博碩士論文 105521087 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.129.45.144
姓名 周哲伍(Che-Wu Chou)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於卷積神經網路及色彩影像技術之火焰辨識
(Flame Identification Based on Convolutional Neural Network and Color Image Technology)
相關論文
★ 基於深度神經網路的手勢辨識研究★ 人體姿勢矯正項鍊配載影像辨識自動校準及手機接收警告系統
★ 以遞迴式神經網路補償模型預測控制於永磁同步馬達定位
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 中文摘要
本篇論文提出一種深度學習的演算法藉由卷積神經網路演算法以及色彩空間分析,同時結合了背景相減法、形態學、角點偵測以及感興趣區域,來實現連續影像火焰追蹤辨識。
近幾年,智慧型家庭監控系統的崛起並且基於即時影像的技術更加成熟,所以對於火焰的防範,有別於過去較傳統的方式來偵測,例如煙霧或溫度感測器,但相較於即時影像偵測,大多為時已晚。就如近期有一場火災奪走七條消防員的生命,如果有此監控影像的使用,也許就不會有這個悲劇發生,因此本文所探討的系統是希望在火焰開始擴展以前,藉由即時影像進行火焰辨識,進而告知人們,以至於達到降低人員及財物的損失。
摘要(英) Abstract
This paper proposes a deep learning algorithm by using “convolutional neural network algorithm” and “color space analysis” for real-time recognition, which combines background substraction, morphology, corner detection and regions of interest to achieve the flame tracking recognition of continuous image.
In recent years, the rise of smart home monitoring systems and the technology based on real-time image have become more and more mature, so the preventive measure of fire is very different from traditional methods, such as smoke sensors and temperature sensors. Therefore, compared to the real-time image detection, the traditional methods are too slow to measure the prevention. As it happened recently, there are seven firefighters died on the fire disaster. If the surveillance image is used, there may not be this tragedy. As a consequence, the system discussed in this article can notify people by using real-time image to flame recognition before the flame begin to expand, so as to reduce the loss of personnel and property.
關鍵字(中) ★ 火焰辨識
★ 視訊監控
★ 卷積神經網路
關鍵字(英) ★ flame recognition
★ video surveillance
★ convolutional neural network
論文目次 目錄
中文摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1.1研究目的 1
1.2 研究背景 2
1.3 研究方法 4
1.4 主要結果與貢獻 4
1.5論文架構 5
第二章 系統架構與系統描述 6
2.1外部硬體 6
2.2內部軟體 7
2.3 系統架構 9
第三章 火焰偵測 13
3.1 色彩空間介紹與應用 14
3.1.1 色彩空間 14
3.1.2 火焰偵測 16
3.2 影像及形態學處理 21
3.2.1 中值濾波 22
3.2.2 高斯濾波 23
3.2.3 侵蝕(Erosion) 28
3.2.4 膨脹(Dilation) 29
3.3 目標偵測 30
3.3.1 連續影像相減法(Temporal difference) 31
3.3.2 光流法(Optical flow) 31
3.3.3 卡爾曼波器(Kalman filter) 32
3.3.4 高斯混合(Mixture of Gaussians) (MoG) 32
3.3.5 背景相減法(Background substraction) 32
3.4 火焰特徵分析 34
3.5 感興趣區域與影像處理結果 35
第四章 卷積神經網路演算法 38
4.1 卷積神經網路組成 38
4.1.1 卷積層(Convolution Layer) 39
4.1.2 池化層(Pooling Layer) 41
4.1.3 全連接層(Fully Connected Layer) 42
4.2 卷積神經網路種類 43
4.2.1 Lenet 43
4.2.2 AlexNet 44
4.2.3 GoogleNet 45
4.2.4 VGGNET 46
4.3 卷積神經網路架構 46
4.4 系統流程說明 50
第五章 實驗結果與討論 51
5.1 火焰偵測情況 51
5.1.1 光線不同實驗 51
5.1.2 背景不同實驗 55
5.2 卷積神經網路 58
5.3 討論 60
第六章 結論與建議 62
6.1 結論 62
6.2 建議 63
參考文獻 64
參考文獻 參考文獻
[1] Muhammad Fadhil Abdullah, Inung Wijayanto, Angga Rusdinar School of Electrical Engineering Telkom University Bandung, Indonesia,” Position Estimation and Fire Detection Based on Digital Video Color Space for Autonomous Quadcopter Using Odroid XU4”, The 2016 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC), pp. 169-173 Sept. 2016
[2] M. Kass, A. Witkin and D. Terzopoulos, “Snake: active contour models”, International Journal of Computer Vision, 321-332, 1988.
[3] S. McKenna, S. Jabri, Z. Duric, H. Wechsler and A.Rosenfeld, “Tracking groups of people,” Comput. Vis. Image Understanding, vol. 80, pp. 42-56, 2000.
[4] C. R. Wren, A. Azarbayejani, T. Darrell, and A. P. Pentland, “Pfinder: Real-time tracking of the human body,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, pp. 780-785, 1997.
[5] S. T. Birchfield and S. Rangarajan, “Spatiograms versus histograms for region-based tracking,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1158-1163, 2005.
[6] Byoung Chul Ko, Sun Jae Ham, and Jae Yeal Nam,” Modeling and Formalization of Fuzzy Finite Automata for Detection of Irregular Fire Flames”, IEEE Transactions On Circuits And Systems For Video Technology, VOL. 21, NO. 12, DECEMBER 2011
[7] J. L. Barron, D. J. Fleet, S. S. Beauchemin and T. A. Burkitt, “Performance of optical flow techniques,” Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 236 - 242, 1992.
[8] M. Mueller, P. Karasev, I. Kolesov and A. Tannenbaum, “Optical Flow Estimation for Flame Detection in Videos,” IEEE Transactions on Image Processing, vol. 22, no. 7, pp. 2786-2797, 2013.
[9] D. Comaniciu , V. Ramesh, P. Meer, “Kernel-based object tracking,” IEEE Transaction on Pattern Analysis and Machine Intelligence, vol.25, no. 5, pp. 564-577, 2003.
[10] S. X. Ju, M. J. Black, and Y. Yaccob, “Cardboard people: a parameterized model of articulated image motion,” in Proc. IEEE Int. Conf. Automatic Face and Gesture Recognition, pp. 38–44. 1996.
[11] S. Y. Chen, S. Y. Ma, L. G. Chen, “Efficient moving object segmentation algorithm using background registration technique,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 12, no. 7, pp. 577-586, 2002.
[12] Y. C. Chung, J. M. Wang, and S. W. Chen, “Progressive Background Image Generation,” in Proc. of 15th IPPR Conf. on Computer Vision, Graphics and Image Processing, pp. 858-865, 2002.
[13] L. Maddalena and A. Petrosino, “A Self-Organizing Approach to Background Substraction for Visual Surveillance Applications,” IEEE Transactions on Image Processing, vol.17, no. 7, pp. 1168-1177, 2008.
[14] L. Bischof and R. Adams, “Seeded Region Growing,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 16, no. 6, pp. 641-647, 1994.
[15] Diederik P. Kingma and Jimmy Lei Ba, ” ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION,” conference paper at ICLR, pp.1-15, 2015
[16] Josette. C. Tagatio Mawafo , W.A. Clarke and P.E. Robinson,” Identification of Facial Features on Android Platforms”, IEEE Conference on Industrial Technology,pp.25-25,2013
[17] 廖翌涵,「適用於多種解析度之嚴謹小火焰智慧型視訊偵測算法 的開發與設計」,國立台北科技大學資訊工程學系,碩士論文,民國101年
[18] R.C Gonzalez, R.E. Woods, “Digital Image Processing Third Edition”, Addison-Wesley Publishing, NY, 2007.
[19] I. A. Karaulova, P. M. Hall, and A. D. Marshall, “A hierarchical model of dynamics for tracking people with a single video camera,” in Proc.British Machine Vision Conf, pp. 262–352, 2000.
[20] D. S. Jang and H. I. Choi, “Active models for tracking moving objects, ” Pattern Recognition, vol. 33, no. 7, pp. 1135–1146, 2000.
[21] Emine CENGIL , Ahmet CINAR and Zafer GULER,” A GPU-Based Convolutional Neural Network Approach for Image Classification,” IEEE Conferences, pp.1-9, 2017
[22] Sebastien Frizzi, Rabeb Kaabi, Moez Bouchouicha, Jean-Marc Ginoux, Eric Moreau and Farhat Fnaiech,” Convolutional Neural Network for Video Fire and Smoke Detection,” IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society, pp.877-882, 2016
[23] Weiwei Shi, Yihong Gong, Senior Member, Xiaoyu Tao, and Nanning Zheng,” Training DCNN by Combining Max-Margin, Max-Correlation Objectives, and Correntropy Loss for Multilabel Image Classification,” IEEE Transactions On Neural Neteorks And Learning Systems, pp.1-13, 2018
[24] Jianqing Xu, Boya Wang, Junbao Li, Cong Hu and Jengshyang Pan,” Deep Learning Application Based on Embedded GPU,” 2017 First International Conference on Electronics Instrumentation & Information Systems (EIIS), pp.1-4, 2017
[25] Mandar Haldekar, Ashwinkumar Ganesan and Tim Oates,” Identifying Spatial Relations in Images using Convolutional Neural Networks,” 2017 International Joint Conference on Neural Networks (IJCNN), pp.3593-3600, 2017
[26] B. U. Toreyin, Y. Dedeoglu,U. Gudukbay, A. E. Cetin, ,Computer vision based method for real-time fire and flame detection,Pattern recognition letters, ,pp. 49-58, 2006
[27] E. Cetin et al, Video fire detection – Review, Digital Signal Processing, Volume 23, Issue 6, pp. 1827-1843, 2013
[28] K. Fukushima, Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, pp.193–202, 1980
指導教授 鍾鴻源 莊堯棠(Hung-Yuan Chung Yau-Tarng Juang) 審核日期 2018-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明