博碩士論文 100521059 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:18.118.193.223
姓名 紀凱倫(Kai-Lun Chi)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具有鋅擴散和氧化掏離結構的超高速(>50 Gbps)垂直共振腔面射型雷射和其在200 Gbps短波波長多工系統的應用
(High-Speed (>50 Gbps) Vertical-Cavity Surface-Emitting Lasers with Zn-Diffusion and Oxide-Relief Structures for 200 Gbps Shortwave Wavelength Division Multiplexing (SWDM) Applications)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在現今光纖通訊(OI)市場中,主要是以850奈米的垂直共振腔面射型雷射(VCSEL)來當作短距離(<300米)主要的訊號發射端,因為VCSEL的製作成本低、元件面積小且低耗能,最主要的是直接調變即可實現高速的傳輸數據。而在數據中心裡使用到大量的光連結,成本和能源效率就成為關鍵的議題。因此很多研究團隊試圖想改善這個問題,如採用短波長分波多工(SWDM)技術來傳輸,它是由四個不同波長的VCSEL當作訊號發射端,接收這四個的波長訊號的同時再由一條多模光纖(MMF)來傳輸數據,如此一來,光纖的數目可減少為原來的四分之一。除了光纖成本外,每條通道的通道速度也是很重要的議題,現在VCSEL的開關鍵控調變(OOK)以56 Gbit/s為目標來滿足下一代光纖通訊的要求。
現在幾乎所有的高速VCSEL都是使用水氧化製程來侷限電流,但是其產生的薄氧化層會造成明顯的寄生電容,這是限制頻寬的原因之一,因此我們利用氧化層掏離技術來解決這問題,此方法是利用化學性濕蝕刻將氧化鋁給去除,以空氣取而代之,因空氣的介電常數低於氧化鋁,所以寄生電容降低,進而提升速度。另外氧化鋁與周圍的砷化鋁鎵(AlGaAs)晶格常數不匹配,可能會在高電流操作時導致一些缺陷,氧化層掏離技術正好可以解決問題,提高元件的可靠度。除了速度之外,傳輸距離也是一個很重要的因素,這是因為隨著物聯網和雲端的蓬勃發展,數據需求量越來越大,使得數據中心越蓋越大,距離也將成為一個問題。在長距離傳輸下,所面臨到模態色散的問題,使得數據在傳輸的過程中失真,所以我們利用鋅擴散技術使上層布拉格反射鏡(DBR)的原子排序紊亂並降低擴散區域的反射率,因此可以抑制其它非主要的模態,使得模態數目減少,從而實現無失真的長距離傳輸。
在本論文中,我們結合鋅擴散和氧化層掏離技術來製造VCSEL。首先,我們研發出旁模抑制比(SMSR)大於30dB的單模850奈米VCSEL,並且能以26 Gbit/s數據速率在OOK光收發模組調變下成功地實現以OM4 MMF傳輸的高比特率距離乘積(14 Gbit/s × 2.0 km)。而且也利用單模850奈米VCSEL做成陣列元件,呈現出近圓形對稱的遠場圖形、發散角非常窄(~4°)且輸出功率高達187.4毫瓦。另外,在高速VCSEL研發上,分別有頻寬高達29 GHz的850奈米VCSEL,使用前向錯誤更正(FEC)和決策回饋等化器(DFE)處理實現以一公里OM4 MMF的54 Gbit/s無錯誤數據傳輸。另一種是頻寬高達31 GHz的940奈米VCSEL,並不需要FEC和DFE處理就實現以50公尺OM5 MMF的50 Gbit/s無錯誤數據傳輸,這些高速VCSEL都已經應用於SWDM系統上。現在我們利用鋅擴散與氧化層掏離技術運用到新穎的主動層設計VCSEL結構,從而實現從室溫到高溫(85 °C)下擁有不變的速度表現,而且在環境溫度高達150 °C下,仍能擁有25Gbit/s無錯誤數據傳輸特性。
摘要(英) In today′s optical communications (OI) market, vertical-cavity surface-emitting lasers (VCSELs) with central wavelengths at 850 nm have mainly been used as the primary signal emitters for short distances (<300 m). This is because VCSELs have a low-cost of fabrication, small device area, low power consumption, and most importantly have the capability of high-speed direct modulation. Data centers require an enormous number of links, which makes cost and energy efficiency critical issues. Therefore, many research teams are trying to solve this problem, some by using shortwave wavelength division multiplexing (SWDM) technology which utilizes multiple VCSELs at different wavelengths coupled into one multimode fiber (MMF). Consequently, the number of MMFs can be reduced. In addition to the cost of fiber, the data rate of each channel is also a very important issue. The targeted the on-off keying (OOK) modulation speed of a VCSEL is 56 Gbit/s to meet the requirements of the next generation of OI channels.
Up till now, almost all high-speed VCSELs utilize the wet oxidation process for current confinement, but this thin oxide layer causes significant parasitic capacitance, which is one of the factors limiting bandwidth. In order to overcome this problem, we demonstrate an oxide-relief technique which uses selective wet chemical etching to remove AlOx and replace it with air, whose dielectric constant is lower than that of AlOx. As the parasitic capacitance is reduced, the speed will increase. In addition, the lattice constant of AlOx does not match that of the surrounding AlGaAs layers, which may cause some defects during high-current operation. The oxide-relief technique can solve this problem and increase the reliability of the devices. Therefore, the oxide-relief technique not only can enhance the bandwidth but also can increase the reliability. In addition to the problem of speed, transmission distance is also very important. With the rapid development of the Internet of Things and the Cloud, the amount of data that needs to be handled has increased enormously and data centers are becoming bigger and bigger, making long-distance transmission an issue. Under long-distance transmission, problems of mode and chromatic dispersion arise, which distorts the data to be transmitted. Therefore, we utilize the Zn-diffusion technique, which disorders the top Distributed-Bragg-Reflector (DBR) mirrors and reduces the reflectivity in the diffused area, to suppress the higher-order modes. Since the number of modes becomes less, the influence of modal dispersion will thus decrease, which will help to achieve long-distance transmission without distortion.
In this dissertation, we incorporate the Zn-diffusion and oxide-relief technique to fabricate a VCSEL. First, we demonstrated single-mode 850 nm VCSELs with a side-mode suppression ratio (SMSR) of more than 30 dB, and obtained a maximum data rate up to 26 Gbit/s. Under OOK modulation formats we successfully demonstrated a high bit rate-distance product (14 Gbit/s × 2.0 km) for OM4 MMF transmission. In addition, we have demonstrated a single-mode 850 nm VCSEL array structure with excellent lasing performance. A stable (invariable) near circular far-field pattern with a narrow full-width half maximum (FWHM) divergence angle (~4°) under the full range of bias current and a high maximum single-lobe output power (187.4 mW) under continuous wave (CW) operation can be achieved. This has enabled the development of high-speed VCSELs, one of which is a 850 nm VCSEL whose electrical-to-optical (E-O) bandwidth achieves 29 GHz. In addition by using forward error correction (FEC) and decision feedback equalization (DFE) processing, at room-temperature (RT) we were able to obtain error free data transmission for 54 Gbit/s back-to-back (BTB) through a 1 km OM4 fiber. With another 940 nm VCSEL, an E-O bandwidth of 31 GHz was achieved with and 50 Gbit/s BTB data transmission under RT. Error-free transmission over a 50 meter OM5 fiber can be successfully achieved without using pre-emphasis or equalization techniques. These high-speed VCSELs have been applied to SWDM systems. A Zn-diffusion/oxide-relief VCSEL structure with a novel active layer design, which can achieve invariant high-speed performance from RT to high temperature (85 °C), has been studied. When the ambient temperature increases to 150 °C, it can achieve 25 Gbit/s error-free data transmission.
關鍵字(中) ★ 垂直共振腔面射型雷射
★ 氧化掏離
★ 鋅擴散
關鍵字(英) ★ VCSEL
★ Oxide-Relief
★ Zn-Diffusion
論文目次 論文摘要 I
Abstract III
Acknowledgement VI
Contents VIII
List of figures X
List of tables XVIII
Chapter 1 Introduction 1
1.1 Latest Trends in Optical Interconnects (OIs) 1
1.2 VCSELs vs. Silicon Photonics in OIs 6
1.3 VCSEL Based SWDM Technology 9
1.4 Toward >50 Gbit/s High-Speed VCSELs 14
1.5 Our techniques: Zn-diffusion and oxide-relief 18
Chapter 2 Design of a >50G VCSEL with Zn-diffusion/Oxide-confined Apertures 21
2.1 The Design of a VCSEL 21
2.2 Design of the Active Layer 24
2.2.1 Strain 24
2.2.2 P-type Doping 27
2.2.3 Detuning 29
2.3 Parasitic RC and Impedance of the VCSEL 31
2.4 (Quasi) Single-Mode Design 34
Chapter 3 VCSEL Fabrication and Measurement Setup 37
3.1 Steps in the Fabrication Process 37
3.2 The Measurement Setup for the VCSEL 42
3.2.1 Static Measurement 42
3.2.2 Dynamical Measurement 47
Chapter 4 A High Single-Mode and High Power VCSEL 52
4.1 Transmission Results in a km MMF channel 53
4.2 A Single-Mode/High-Power VCSEL Array 62
4.3 Summary 73
Chapter 5 A High-Speed (>50 Gbit/s) VCSEL 75
5.1 The Static/Dynamic Behaviors of High-Speed 850 nm VCESLs 76
5.2 The Static/Dynamic Behaviors of High-Speed 940 nm VCESLs 83
5.3 Summary 93
Chapter 6 Future Work 95
Appendixes: Epi Structure 100
Appendix A: IQE Standard Epi-layer Structure 100
Appendix B: High-speed 850 nm Epi-layer Structure 101
Appendix C: High-speed 940 nm Epi-layer Structure 103
References 105
Publication list 116
參考文獻 [1] P. Moser, P. Wolf, G. Larisch, H. Li, J. A. Lott, and D. Bimberg, "Energy-efficient oxide-confined high-speed VCSELs for optical interconnects," in SPIE OPTO, San Francisco, California, United States, 2014, pp. 900103-900103-8.
[2] E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, et al., "30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s," Electronics Letters, vol. 51, No. 14, pp. 1096-1098, July 2015.
[3] D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, et al., "A 71-Gb/s NRZ Modulated 850-nm VCSEL-Based Optical Link," IEEE Photonics Technology Letters vol. 27, No. 6, pp. 577-580, March 2015.
[4] D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, et al., "A 50 Gb/s NRZ modulated 850 nm VCSEL transmitter operating error free to 90 °C," Journal of Lightwave Technology, vol. 33, No. 4, pp. 802-810, February 2015.
[5] K. Szczerba, P. Westbergh, J. Karout, J. S. Gustavsson, A. Haglund, M. Karlsson, et al., "4-PAM for high-speed short-range optical communications," IEEE/OSA Journal of Optical Communications and Networking, vol. 4, No. 11, pp. 885-894, November 2012.
[6] R. Puerta, M. Agustin, L. Chorchos, J. To?ski, J.-R. Kropp, N. Ledentsov, et al., "107.5 Gb/s 850 nm multi-and single-mode VCSEL transmission over 10 and 100 m of multi-mode fiber," in Optical Fiber Communications Conference and Exhibition (OFC), Anaheim, CA, USA, 2016, p. Th5B.5.
[7] I.-C. Lu, J.-W. Shi, H.-Y. Chen, C.-C. Wei, S.-F. Tsai, D. Hsu, et al., "Ultra low power VCSEL for 35-Gbps 500-m OM4 MMF transmissions employing FFE/DFE equalization for optical interconnects," in Optical Fiber Communications Conference and Exhibition (OFC), Anaheim, CA, USA, 2013, p. JTh2A. 75.
[8] P. A. Milder, R. Bouziane, R. Koutsoyannis, C. R. Berger, Y. Benlachtar, R. I. Killey, et al., "Design and simulation of 25 Gb/s optical OFDM transceiver ASICs," Optics Express, vol. 19, No. 26, pp. B337-B342, December 2011.
[9] K. Kurata, "High-speed optical transceiver and systems for optical interconnects," in Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 2010, p. OThS3.
[10] D. Bimberg, "Green data and computer communication," in Photonics Conference (PHO), Arlington, VA, USA, 2011, pp. 308-309.
[11] M. A. Taubenblatt, "Optical interconnects for high-performance computing," Journal of Lightwave Technology, vol. 30, No. 4, pp. 448-457, February 2012.
[12] D. Molin, L.-A. d. Montmorillon, and P. Sillard, "Low bending sensitivity of regular OM3/OM4 fibers in 10GbE applications," in Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 2010, p. JThA55.
[13] P. Moser, W. Hofmann, P. Wolf, J. A. Lott, G. Larisch, A. Payusov, et al., "81 fJ/bit energy-to-data ratio of 850 nm vertical-cavity surface-emitting lasers for optical interconnects," Applied Physics Letters, vol. 98, No. 23, p. 231106, June 2011.
[14] P. Moser, J. A. Lott, P. Wolf, G. Larisch, A. Payusov, N. N. Ledentsov, et al., "Energy-Efficient oxide-confined 850-nm VCSELs for long-distance multimode fiber optical interconnects," IEEE Journal of Selected Topics in Quantum Electronics, vol. 19, No. 2, pp. 7900406-7900406, March/April 2013.
[15] R. Safaisini, K. Szczerba, E. Haglund, P. Westbergh, J. S. Gustavsson, A. Larsson, et al., "20 Gbit/s error-free operation of 850 nm oxide-confined VCSELs beyond 1 km of multimode fibre," Electronics Letters, vol. 48, No. 19, pp. 1225-1227, September 2012.
[16] P. Moser, P. Wolf, G. Larlsch, H. Li, J. A. Lott, and D. Bimberg, "Energy efficient 850 nm VCSELs for error-free 30 Gb/s operation across 500 m of multimode optical fiber with 85 fJ of dissipated energy per bit," in Optical Interconnects Conference, Santa Fe, NM, USA, 2013, pp. 13-14.
[17] J. A. Lott, A. S. Payusov, S. A. Blokhin, P. Moser, N. N. Ledentsov, and D. Bimberg, "Arrays of 850 nm photodiodes and vertical cavity surface emitting lasers for 25 to 40 Gbit/s optical interconnects," physica status solidi (c), vol. 9, No. 2, pp. 290-293, February 2012.
[18] C. Xie, J. Kan, S. Huang, L. Wang, N. Li, C. C. Chen, et al., "850 nm VCSEL and PD for ultra high speed data communication over multimode fiber," SEI Tech. Rev, vol. 77, pp. 69-73, October 2013.
[19] H.-S. Lee, J.-Y. Park, S.-M. Cha, S.-S. Lee, G.-S. Hwang, and Y.-S. Son, "Ribbon plastic optical fiber linked optical transmitter and receiver modules featuring a high alignment tolerance," Optics express, vol. 19, No. 5, pp. 4301-4309, February 2011.
[20] R. Soref, "The past, present, and future of silicon photonics," IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, No. 6, pp. 1678-1687, November/December 2006.
[21] M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, et al., "Hybrid silicon photonic integrated circuit technology," IEEE Journal of Selected Topics in Quantum Electronics, vol. 19, No. 4, p. 6100117, July/August 2013.
[22] D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, P. Westbergh, et al., "64Gb/s Transmission over 57m MMF using an NRZ Modulated 850nm VCSEL," in Optical Fiber Communications Conference and Exhibition (OFC), San Francisco, CA, USA, 2014, p. Th3C.2.
[23] P. Westbergh, R. Safaisini, E. Haglund, B. Kogel, J. S. Gustavsson, A. Larsson, et al., "High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s," Electronics Letters, vol. 48, No. 18, pp. 1145-1147, August 2012.
[24] P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, and A. Joel, "High-speed 850 nm VCSELs with 28 GHz modulation bandwidth for short reach communication," in SPIE OPTO, San Francisco, California, USA, 2013, pp. 86390X-86390X-6.
[25] P. Westbergh, R. Safaisini, E. Haglund, Johan S. Gustavsson, A. Larsson, M. Geen, et al., "High-Speed Oxide Confined 850-nm VCSELs Operating Error-Free at 40 Gb/s up to 85 °C," IEEE Photonics Technology Letters, vol. 25, No. 8, pp. 768-771, April 2013.
[26] P. Wolf, P. Moser, G. Larisch, H. Li, J. A. Lott, and D. Bimberg, "Energy efficient 40 Gbit/s transmission with 850 nm VCSELs at 108 fJ/bit dissipated heat," Electronics Letters, vol. 49, No. 10, pp. 666-667, May 2013.
[27] P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, et al., "56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s," Electronics Letters, vol. 48, No. 20, pp. 1292-1294, September 2012.
[28] J. S. Gustavsson, A. Haglund, J. Bengtsson, P. Modh, and A. Larsson, "Dynamic behavior of fundamental-mode stabilized VCSELs using a shallow surface relief," IEEE Journal of Quantum Electronics, vol. 40, No. 6, pp. 607-619, June 2004.
[29] P. Westbergh, J. S. Gustavsson, A. Larsson, T. F. Taunay, L. Bansal, and L. Gruner-Nielsen, "Crosstalk characteristics and performance of VCSEL array for multicore fiber interconnects," IEEE Journal of Selected Topics in Quantum Electronics, vol. 21, No. 6, pp. 429-435, November/December 2015.
[30] D. M. Kuchta, "High-Capacity VCSEL Links," in Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, USA, 2017, p. Tu3C. 4.
[31] S. Nakagawa, D. Kuchta, C. Schow, R. John, L. A. Coldren, and Y.-C. Chang, "1.5 mW/Gbps low power optical interconnect transmitter exploiting high-efficiency VCSEL and CMOS driver," in Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 2008, p. OThS3.
[32] D. Molin, F. Achten, M. Bigot, A. Amezcua-Correa, and P. Sillard, "WideBand OM4 multi-mode fiber for next-generation 400Gbps data communications," in European Conference on Optical Communication (ECOC), Cannes, France, 2014, pp. 1-3.
[33] S. M. R. Motaghiannezam, I. Lyubomirsky, H. Daghighian, C. Kocot, T. Gray, J. TatuM, et al., "180 Gbps PAM4 VCSEL transmission over 300m wideband OM4 fibre," in Optical Fiber Communications Conference and Exhibition (OFC), Anaheim, CA, USA, 2016, p. Th3G.2.
[34] W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, "Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers," IEEE Journal of Quantum Electronics, vol. 33, No. 10, pp. 1810-1824, October 1997.
[35] Y. H. Lee, J. L. Jewell, B. Tell, K. F. Brown-Goebeler, A. Scherer, J. P. Harbison, et al., "Effects of etch depth and ion implantation on surface emitting microlasers," Electronics Letters, vol. 26, No. 4, pp. 225-227, February 1990.
[36] B. J. Thibeault, T. A. Strand, T. Wipiejewski, M. G. Peters, D. B. Young, S. W. Corzine, et al., "Evaluating the effects of optical and carrier losses in etched?post vertical cavity lasers," Journal of applied physics, vol. 78, No. 10, pp. 5871-5875, August 1995.
[37] M. Yazdanypoor and A. Gholami, "Optimizing Optical Output Power of Single-Mode VCSELs Using Multiple Oxide Layers," IEEE Journal of Selected Topics in Quantum Electronics, vol. 19, No. 4, p. 1701708, July/August 2013.
[38] E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, and A. Larsson, "High-speed VCSELs with strong confinement of optical fields and carriers," Journal of Lightwave Technology, vol. 34, No. 2, pp. 269-277, January 2016.
[39] Y.-C. Chang and L. A. Coldren, "Efficient, high-data-rate, tapered oxide-aperture vertical-cavity surface-emitting lasers," IEEE Journal of Selected Topics in Quantum Electronics, vol. 15, No. 3, pp. 704-715, May/June 2009.
[40] A. Larsson, J. S. Gustavsson, E. Haglund, E. P. Haglund, T. Lengyel, and E. Simpanen, "High-speed VCSELs for OOK and multilevel PAM modulation," in IEEE Photonics Conference (IPC), Orlando, FL, USA, 2017, pp. 355-356.
[41] M. Liu, C. Y. Wang, M. Feng, and N. Holonyak, "850 nm oxide-confined VCSELs with 50 Gb/s error-free transmission operating up to 85 °C," in Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 2016, p. SF1L.6.
[42] G. Larisch, P. Moser, J. A. Lott, and D. Bimberg, "Impact of photon lifetime on the temperature stability of 50 Gb/s 980 nm VCSELs," IEEE Photonics Technology Letters, vol. 28, No. 21, pp. 2327-2330, July 2016.
[43] P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, and D. Bimberg, "Error-free 46 Gbit/s operation of oxide-confined 980 nm VCSELs at 85 °C," Electronics Letters, vol. 50, No. 19, pp. 1369-1371, September 2014.
[44] E. Haglund, A. Haglund, P. Westbergh, J. S. Gustavsson, B. Kogel, and A. Larsson, "25 Gbit/s transmission over 500 m multimode fibre using 850 nm VCSEL with integrated mode filter," Electronics Letters, vol. 48, No. 9, pp. 517-519, August 2012.
[45] A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, "High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure," Applied Physics Letters, vol. 85, No. 22, pp. 5161-5163, November 2004.
[46] D. Zhou and L. J. Mawst, "High-power single-mode antiresonant reflecting optical waveguide-type vertical-cavity surface-emitting lasers," IEEE Journal of Quantum Electronics, vol. 38, No. 12, pp. 1599-1606, December 2002.
[47] A. Haglund, J. S. Gustavsson, P. Modh, and A. Larsson, "Dynamic mode stability analysis of surface relief VCSELs under strong RF modulation," IEEE Photonics Technology Letters, vol. 17, No. 8, pp. 1602-1604, August 2005.
[48] C. C. Chen, S. J. Liaw, and Y. J. Yang, "Stable single-mode operation of an 850-nm VCSEL with a higher order mode absorber formed by shallow Zn diffusion," IEEE Photonics Technology Letters, vol. 13, No. 4, pp. 266-268, April 2001.
[49] F. Mederer, I. Ecker, J. Joos, M. Kicherer, H. J. Unold, K. J. Ebeling, et al., "High performance selectively oxidized VCSELs and arrays for parallel high-speed optical interconnects," IEEE transactions on advanced packaging, vol. 24, No. 4, pp. 442-449, November 2001.
[50] T. G. Dziura, Y. J. Yang, R. Fernandez, and S. C. Wang, "Singlemode surface emitting laser using partial mirror disordering," Electronics Letters, vol. 29, No. 14, pp. 1236-1237, July 1993.
[51] P. D. Floyd, M. G. Peters, L. A. Coldren, and J. L. Merz, "Suppression of higher-order transverse modes in vertical-cavity lasers by impurity-induced disordering," IEEE Photonics Technology Letters, vol. 7, No. 12, pp. 1388-1390, December 1995.
[52] J.-W. Shi, L.-C. Yang, C.-C. Chen, Y.-S. Wu, S.-H. Guol, and Y.-J. Yang, "Minimization of damping in the electrooptic frequency response of high-speed Zn-diffusion single-mode vertical-cavity surface-emitting lasers," IEEE Photonics Technology Letters, vol. 19, No. 24, pp. 2057-2059, December 2007.
[53] J.-W. Shi, C.-C. Chen, Y.-S. Wu, S. H. Guol, and Y.-J. Yang, "The influence of Zn-diffusion depth on the static and dynamic behavior of Zn-diffusion high-speed vertical-cavity surface-emitting lasers at an 850 nm wavelength," IEEE Journal of Quantum Electronics, vol. 7, No. 45, pp. 800-806, July 2009.
[54] R. W. Herrick, A. Dafinca, P. Farthouat, A. A. Grillo, S. J. McMahon, and A. R. Weidberg, "Corrosion-based failure of oxide-aperture VCSELs," IEEE Journal of Quantum Electronics, vol. 49, No. 12, pp. 1045-1052, December 2013.
[55] H. Li, P. Wolf, P. Moser, G. Larisch, A. Mutig, J. A. Lott, et al., "Impact of the quantum well gain-to-cavity etalon wavelength offset on the high temperature performance of high bit rate 980-nm VCSELs," IEEE Journal of Quantum Electronics, vol. 50, No. 8, pp. 613-621, August 2014.
[56] H. Soda, K.-i. Iga, C. Kitahara, and Y. Suematsu, "GaInAsP/InP surface emitting injection lasers," Japanese Journal of Applied Physics, vol. 18, No. 12, p. 2329, August 1979.
[57] M. Ogura, W. Hsin, M. C. Wu, S. Wang, o. R. Whinnery, S. C. Wang, et al., "Surface?emitting laser diode with vertical GaAs/GaAlAs quarter?wavelength multilayers and lateral buried heterostructure," Applied physics letters, vol. 51, No. 21, pp. 1655-1657, September 1987.
[58] H. Hatakeyama, T. Anan, T. Akagawa, K. Fukatsu, N. Suzuki, K. Tokutome, et al., "Highly Reliable High-Speed 1.1-μm-Range VCSELs With InGaAs/GaAsP-MQWs," IEEE Journal of Quantum Electronics, vol. 46, No. 6, pp. 890-897, June 2010.
[59] J. Guenter, B. Hawkins, R. Hawthorne, and G. Landry, "Reliability of VCSELs for > 25Gb/s," in Optical Fiber Communications Conference and Exhibition (OFC), San Francisco, CA, USA, 2014, p. M3G.2.
[60] P. Westbergh, J. S. Gustavsson, A. Haglund, A. Larsson, F. Hopfer, G. Fiol, et al., "32 Gbit/s multimode fibre transmission using high-speed, low current density 850 nm VCSEL," Electronics letters, vol. 45, No. 7, pp. 366-368, March 2009.
[61] P. Westbergh, J. S. Gustavsson, A. Haglund, M. Skold, A. Joel, and A. Larsson, "High-speed, low-current-density 850 nm VCSELs," IEEE Journal of Selected Topics in Quantum Electronics, vol. 15, No. 3, pp. 694-703, April 2009.
[62] S. B. Healy, E. P. O′Reilly, J. S. Gustavsson, P. Westbergh, A. Haglund, A. Larsson, et al., "Active region design for high-speed 850-nm VCSELs," IEEE Journal of Quantum Electronics, vol. 46, No. 4, pp. 506-512, April 2010.
[63] K. Uomi, "Modulation-doped multi-quantum well (MD-MQW) lasers. I. Theory," Japanese journal of applied physics, vol. 29, No. 1R, p. 81, January 1990.
[64] K. Uomi, T. Mishima, and N. Chinone, "Modulation-doped multi-quantum well (MD-MQW) lasers. II. Experiment," Japanese journal of applied physics, vol. 29, No. 1R, p. 88, January 1990.
[65] L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode lasers and photonic integrated circuits, 2 nd ed. New York, NY, USA: Wiley, 1995.
[66] N. Hatori, A. Mizutani, N. Nishiyama, A. Matsutani, T. Sakaguchi, F. Motomura, et al., "An over 10-Gb/s transmission experiment using a p-type delta-doped InGaAs-GaAs quantum-well vertical-cavity surface-emitting laser," IEEE Photonics Technology Letters, vol. 10, No. 2, pp. 194-196, February 1998.
[67] A. Schonfelder, S. Weisser, I. Esquivias, J. D. Ralston, and J. Rosenzweig, "Theoretical investigation of gain enhancements in strained In0.35Ga0.65As/GaAs MQW lasers via p-doping," IEEE Photonics Technology Letters, vol. 6, No. 4, pp. 475-478, April 1994.
[68] Y. Zheng, C.-H. Lin, A. V. Barve, and L. A. Coldren, "P-type δ-doping of highly-strained VCSELs for 25 Gbps operation," in IEEE Photonics Conference (IPC), Burlingame, CA, USA, 2012, pp. 131-132.
[69] K.-L. Chi, D.-H. Hsieh, J.-L. Yen, X.-N. Chen, J. J. Chen, and H.-C. Kuo, "850 nm VCSELs with P-type-Doping in the Active Layers for Improved High-Speed and High-Temperature Performance," IEEE Journal of Quantum Electronics, vol. 9, p. 19, November 2016.
[70] H. Nishimoto, M. Yamaguchi, I. Mito, and K. Kobayashi, "High-frequency response for DFB LD due to a wavelength detuning effect," Journal of Lightwave Technology, vol. 5, No. 10, pp. 1399-1402, October 1987.
[71] M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, et al., "Recent advances in DFB lasers for ultradense WDM applications," IEEE Journal of Selected Topics in Quantum Electronics, vol. 10, No. 2, pp. 312-320, March/April 2004.
[72] K. Doi, T. Shindo, M. Futami, T. Amemiya, N. Nishiyama, and S. Arai, "Thermal analysis of self-heating effect in GaInAsP/InP membrane DFB laser on Si substrate," in IEEE Photonics Conference (IPC), Burlingame, CA, USA, 2012, p. Th02.
[73] D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, et al., "Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers," IEEE Journal of Quantum Electronics, vol. 29, No. 6, pp. 2013-2022, June 1993.
[74] R. Safaisini, J. R. Joseph, and K. L. Lear, "Scalable high-CW-power high-speed 980-nm VCSEL arrays," IEEE Journal of Quantum Electronics, vol. 46, No. 11, pp. 1590-1596, November 2010.
[75] J. T. Getty, E. J. Skogen, L. A. Johansson, and L. A. Coldren, "CW operation of 1.55-μm bipolar cascade laser with record differential efficiency, low threshold, and 50-/spl Omega/matching," IEEE Photonics Technology Letters, vol. 15, No. 11, pp. 1513-1515, November 2003.
[76] P. Modh, S. Galt, J. Gustavsson, S. Jacobsson, and A. Larsson, "Linear cascade VCSEL arrays with high differential efficiency and low differential resistance," IEEE photonics technology letters, vol. 18, No. 1, pp. 100-102, January 2006.
[77] J.-W. Shi, H.-W. Huang, F.-M. Kuo, J.-K. Sheu, W.-C. Lai, and M. L. Lee, "Very-High Temperature (200 °C) and High-Speed Operation of Cascade GaN-Based Green Light-Emitting Diodes With an InGaN Insertion Layer," IEEE Photonics Technology Letters, vol. 22, No. 14, pp. 1033-1035, July 2010.
[78] P. Westbergh, J. S. Gustavsson, and A. Larsson, "VCSEL arrays for multicore fiber interconnects with an aggregate capacity of 240 Gbit/s," IEEE Photon. Technol. Lett, vol. 27, No. 3, pp. 296-299, February 2015.
[79] S.-Y. Hu, J. Ko, and L. A. Coldren, "High-performance densely packed vertical-cavity photonic integrated emitter arrays for direct-coupled WDM applications," IEEE Photonics Technology Letters, vol. 10, No. 6, pp. 766-768, June 1998.
[80] J.-L. Yen, X.-N. Chen, K.-L. Chi, J. Chen, and J.-W. Shi, "850 nm Vertical-Cavity Surface-Emitting Laser Arrays With Enhanced High-Speed Transmission Performance Over a Standard Multimode Fiber," Journal of Lightwave Technology, vol. 35, No. 15, pp. 3242-3249, August 2017.
[81] A. Haglund, C. Carlsson, J. S. Gustavsson, J. Halonen, and A. Larsson, "A comparative study of the high-speed digital modulation performance of single-and multimode oxide confined VCSELs for free space optical interconnects," in Proc. SPIE, San Jose, CA, USA, 2002, pp. 272-280.
[82] R. Szweda, "VCSELs resurgent," III-Vs Review, vol. 17, No. 8, pp. 28-31, November 2004.
[83] J. A. Reagan, H. Liu, and J. F. McCalmont, "Laser diode based new generation lidars," in Geoscience and Remote Sensing Symposium, Lincoln, NE, USA, 1996, pp. 1535-1537.
[84] J.-F. Seurin, G. Xu, B. Guo, A. Miglo, Q. Wang, P. Pradhan, et al., "Efficient vertical-cavity surface-emitting lasers for infrared illumination applications," in Proc. SPIE, San Francisco, California, USA, 2011, p. 79520G.
[85] E. W. Young, K. D. Choquette, S. L. Chuang, K. M. Geib, A. J. Fischer, and A. A. Allerman, "Single-transverse-mode vertical-cavity lasers under continuous and pulsed operation," IEEE Photonics Technology Letters, vol. 13, No. 9, pp. 927-929, September 2001.
[86] A. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, and A. Larsson, "Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief," IEEE Photonics Technology Letters, vol. 16, No. 2, pp. 368-370, February 2004.
[87] S. Noda, "Photonic crystal lasers—ultimate nanolasers and broad-area coherent lasers [Invited]," Journal of the Optical Society of America B, vol. 27, No. 11, pp. B1-B8, November 2010.
[88] J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, C. Kuo, and Y.-J. Yang, "High-power and high-speed Zn-diffusion single fundamental-mode vertical-cavity surface-emitting lasers at 850-nm wavelength," IEEE Photonics Technology Letters, vol. 20, No. 13, pp. 1121-1123, July 2008.
[89] H. A. Haus, Waves and fields in optoelectronics. Englewood Cliffs, New Jersey, USA: Prentice-Hall, 1984.
[90] C. F. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, "Fiber optic communication technologies: What′s needed for datacenter network operations," IEEE Communications Magazine, vol. 48, No. 7, p. 32~39, July 2010.
[91] I. Lyubomirsky, W. A. Ling, R. Rodes, H. M. Daghighian, and C. Kocot, "56 Gb/s transmission over 100m OM3 using 25G-class VCSEL and discrete multi-tone modulation," in IEEE Optical Interconnects Conference, San Diego, CA, USA, 2014, p. TuC2.
[92] Y. Liu, W.-C. Ng, B. Klein, and K. Hess, "Effects of the spatial nonuniformity of optical transverse modes on the modulation response of vertical-cavity surface-emitting lasers," IEEE Journal of Quantum Electronics, vol. 39, No. 1, pp. 99-108, January 2003.
[93] P. B. Subrahmanyam, Y. Zhou, L. Chrostowski, and C. J. Chang-Hasnain, "VCSEL tolerance to optical feedback," Electronics Letters, vol. 41, No. 21, pp. 1178-1179, October 2005.
[94] A. Murata and S. Aoki, "A DFB-LD module integrated with 60 dB optical isolator for coherent lightwave transmission systems," IEEE Photonics Technology Letters, vol. 1, No. 8, pp. 221-223, August 1989.
[95] F. J. Achten, T. Boone, P. Pepeljugoski, C. Brokke, and P. Pleunis, "High resolution DMD measurement Set-up for 850-nm laser-optimized graded index multimode optical fibers characterization: A comparison," Journal of optical communications, vol. 25, No. 6, pp. 226-229, December 2004.
[96] G. Giaretta, R. Michalzik, and A. J. Ritger, "Long Distance (2.8 km), short wavelength (0.85 μm) data transmission at 10Gb/sec over new generation high bandwidth multimode fiber," in Conference on Lasers and Electro-Optics (CLEO), San Francisco, CA, USA, 2000, pp. 683-684.
[97] P. Pepeljugoski, D. Kuchta, Y. Kwark, P. Pleunis, and G. Kuyt, "15.6-Gb/s transmission over 1 km of next generation multimode fiber," IEEE Photonics Technology Letters, vol. 14, No. 5, pp. 717-719, May 2002.
[98] P. Moser, J. A. Lott, P. Wolf, G. Larisch, A. Payusov, N. N. Ledentsov, et al., "99 fJ/(bit.km) Energy to Data-Distance Ratio at 17 Gb/s Across 1 km of Multimode Optical Fiber With 850-nm Single-Mode VCSELs," IEEE Photonics Technology Letters, vol. 24, No. 1, pp. 19-21, January 2012.
[99] J.-W. Shi, J.-C. Yan, J.-M. Wun, J. Chen, and Y.-J. Yang, "Oxide-relief and Zn-diffusion 850-nm vertical-cavity surface-emitting lasers with extremely low energy-to-data-rate ratios for 40 Gbit/s operations," IEEE Journal of Selected Topics in Quantum Electronics, vol. 19, No. 2, p. 7900208, March/April 2013.
[100] M. P. Tan, J. A. Lott, S. T. M. Fryslie, N. N. Ledentsov, D. Bimberg, and K. D. Choquette, "25 Gb/s Transmission over 1-km OM4 multimode fiber using a single mode photonic crystal VCSEL," in Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 2013, p. CTu3L.3.
[101] R. Stevenson, "Epistar unveils efficient infrared LED," compound semiconductor magazine, vol. 20, No. 1, p. 7, January/February 2014.
[102] F. Koyama, S. Kinoshita, and K. Iga, "Room?temperature continuous wave lasing characteristics of a GaAs vertical cavity surface?emitting laser," Applied Physics Letters, vol. 55, No. 3, pp. 221-222, July 1989.
[103] M. Orenstein, E. Kapon, J. P. Harbison, L. T. Florez, and N. G. Stoffel, "Large two?dimensional arrays of phase?locked vertical cavity surface emitting lasers," Applied Physics Letters, vol. 60, No. 13, pp. 1535-1537, March 1992.
[104] M. E. Warren, P. L. Gourley, G. R. Hadley, G. A. Vawter, T. M. Brennan, B. E. Hammons, et al., "On?axis far?field emission from two?dimensional phase?locked vertical cavity surface?emitting laser arrays with an integrated phase?corrector," Applied Physics Letters, vol. 61, No. 13, pp. 1484-1486, September 1992.
[105] L. Bao, N.-H. Kim, L. J. Mawst, N. N. Elkin, V. N. Troshchieva, D. V. Vysotsky, et al., "Near-diffraction-limited coherent emission from large aperture antiguided vertical-cavity surface-emitting laser arrays," Applied Physics Letters, vol. 84, No. 3, pp. 320-322, January 2004.
[106] D. F. Siriani and K. D. Choquette, "Electronically controlled two-dimensional steering of in-phase coherently coupled vertical-cavity laser arrays," IEEE Photonics Technology Letters, vol. 23, No. 3, pp. 167-169, February 2011.
[107] K. Otsuka, K. Sakai, Y. Kurosaka, J. Kashiwagi, W. Kunishi, D. Ohnishi, et al., "High-power surface-emitting photonic crystal laser," in Lasers and Electro-Optics Society (LEOS), Lake Buena Vista, FL, USA, 2007, pp. 562-563.
[108] R. Safaisini, E. Haglund, P. Westbergh, J. S. Gustavsson, and A. Larsson, "20 Gbit/s data transmission over 2 km multimode fibre using 850 nm mode filter VCSEL," Electronics Letters, vol. 50, No. 1, pp. 40-42, January 2014.
[109] http://www.ieee802.org/3/NGAUTO/public/adhoc/index.html.
[110] B. M. Hawkins, R. A. Hawthorne, J. K. Guenter, J. A. Tatum, and J. R. Biard, "Reliability of various size oxide aperture VCSELs," in IEEE Electronic Components and Technology Conference, San Diego, CA, USA, 2002, pp. 540-550.
[111] J. R. Kropp, G. Steinle, G. Schafer, V. A. Shchukin, N. N. Ledentsov, J. P. Turkiewicz, et al., "Accelerated aging of 28 Gb s? 1 850 nm vertical-cavity surface-emitting laser with multiple thick oxide apertures," Semiconductor Science and Technology, vol. 30, No. 4, p. 045001, February 2015.
[112] W. Bo, Z. Xian, M. Yanan, L. Jun, Z. Kangping, Q. Shaofeng, et al., "Close to 100 Gbps discrete multitone transmission over 100m of multimode fiber using a single transverse mode 850nm VCSEL," in Vertical-Cavity Surface-Emitting Lasers XX, 2016, p. 97660K.
[113] T. Takamori, T. Fukunaga, J. Kobayashi, K. Ishida, and H. Nakashima, "Electrical and optical properties of Si doped GaAs grown by molecular beam epitaxy on (311) substrates," Japanese journal of applied physics, vol. 26, No. 7R, p. 1097, April 1987.
[114] P. N. Uppal, J. S. Ahearn, and D. P. Musser, "Molecular?beam?epitaxial growth of GaAs (331)," Journal of applied physics, vol. 62, No. 9, pp. 3766-3771, July 1987.
[115] J. M. Ballingall and C. E. C. Wood, "Crystal orientation dependence of silicon autocompensation in molecular beam epitaxial gallium arsenide," Applied Physics Letters, vol. 41, No. 10, pp. 947-949, September 1982.
[116] S. Subbanna, H. Kroemer, and J. L. Merz, "Molecular?beam?epitaxial growth and selected properties of GaAs layers and GaAs/(Al, Ga) As superlattices with the (211) orientation," Journal of applied physics, vol. 59, No. 2, pp. 488-494, January 1986.
[117] R. Notzel, N. N. Ledentsov, L. Daweritz, M. Hohenstein, and K. Ploog, "Direct synthesis of corrugated superlattices on non-(100)-oriented surfaces," Physical review letters, vol. 67, No. 27, p. 3812, December 1991.
[118] R. Notzel, N. N. Ledentsov, and K. Ploog, "Confined excitons in corrugated GaAs/AlAs superlattices," Physical Review B, vol. 47, No. 3, p. 1299, January 1993.
[119] N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, "Progress in epitaxial growth and performance of quantum dot and quantum wire lasers," Journal of lightwave technology, vol. 26, No. 11, pp. 1540-1555, June 2008.
[120] L. N. N, V. A. Shchukin, Y. M. Shernyakov, M. M. Kulagina, A. S. Payusov, N. Y. Gordeev, et al., "Green, yellow and bright red (In, Ga, Al) P–GaP diode lasers grown on high-index GaAs substrates," in High-Power Diode Laser Technology XV, San Francisco, CA, USA, 2017, p. 100860L.
指導教授 許晉瑋(Jin-Wei Shi) 審核日期 2018-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明