參考文獻 |
[1] P. Moser, P. Wolf, G. Larisch, H. Li, J. A. Lott, and D. Bimberg, "Energy-efficient oxide-confined high-speed VCSELs for optical interconnects," in SPIE OPTO, San Francisco, California, United States, 2014, pp. 900103-900103-8.
[2] E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, et al., "30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25–50 Gbit/s," Electronics Letters, vol. 51, No. 14, pp. 1096-1098, July 2015.
[3] D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, et al., "A 71-Gb/s NRZ Modulated 850-nm VCSEL-Based Optical Link," IEEE Photonics Technology Letters vol. 27, No. 6, pp. 577-580, March 2015.
[4] D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, et al., "A 50 Gb/s NRZ modulated 850 nm VCSEL transmitter operating error free to 90 °C," Journal of Lightwave Technology, vol. 33, No. 4, pp. 802-810, February 2015.
[5] K. Szczerba, P. Westbergh, J. Karout, J. S. Gustavsson, A. Haglund, M. Karlsson, et al., "4-PAM for high-speed short-range optical communications," IEEE/OSA Journal of Optical Communications and Networking, vol. 4, No. 11, pp. 885-894, November 2012.
[6] R. Puerta, M. Agustin, L. Chorchos, J. To?ski, J.-R. Kropp, N. Ledentsov, et al., "107.5 Gb/s 850 nm multi-and single-mode VCSEL transmission over 10 and 100 m of multi-mode fiber," in Optical Fiber Communications Conference and Exhibition (OFC), Anaheim, CA, USA, 2016, p. Th5B.5.
[7] I.-C. Lu, J.-W. Shi, H.-Y. Chen, C.-C. Wei, S.-F. Tsai, D. Hsu, et al., "Ultra low power VCSEL for 35-Gbps 500-m OM4 MMF transmissions employing FFE/DFE equalization for optical interconnects," in Optical Fiber Communications Conference and Exhibition (OFC), Anaheim, CA, USA, 2013, p. JTh2A. 75.
[8] P. A. Milder, R. Bouziane, R. Koutsoyannis, C. R. Berger, Y. Benlachtar, R. I. Killey, et al., "Design and simulation of 25 Gb/s optical OFDM transceiver ASICs," Optics Express, vol. 19, No. 26, pp. B337-B342, December 2011.
[9] K. Kurata, "High-speed optical transceiver and systems for optical interconnects," in Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 2010, p. OThS3.
[10] D. Bimberg, "Green data and computer communication," in Photonics Conference (PHO), Arlington, VA, USA, 2011, pp. 308-309.
[11] M. A. Taubenblatt, "Optical interconnects for high-performance computing," Journal of Lightwave Technology, vol. 30, No. 4, pp. 448-457, February 2012.
[12] D. Molin, L.-A. d. Montmorillon, and P. Sillard, "Low bending sensitivity of regular OM3/OM4 fibers in 10GbE applications," in Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 2010, p. JThA55.
[13] P. Moser, W. Hofmann, P. Wolf, J. A. Lott, G. Larisch, A. Payusov, et al., "81 fJ/bit energy-to-data ratio of 850 nm vertical-cavity surface-emitting lasers for optical interconnects," Applied Physics Letters, vol. 98, No. 23, p. 231106, June 2011.
[14] P. Moser, J. A. Lott, P. Wolf, G. Larisch, A. Payusov, N. N. Ledentsov, et al., "Energy-Efficient oxide-confined 850-nm VCSELs for long-distance multimode fiber optical interconnects," IEEE Journal of Selected Topics in Quantum Electronics, vol. 19, No. 2, pp. 7900406-7900406, March/April 2013.
[15] R. Safaisini, K. Szczerba, E. Haglund, P. Westbergh, J. S. Gustavsson, A. Larsson, et al., "20 Gbit/s error-free operation of 850 nm oxide-confined VCSELs beyond 1 km of multimode fibre," Electronics Letters, vol. 48, No. 19, pp. 1225-1227, September 2012.
[16] P. Moser, P. Wolf, G. Larlsch, H. Li, J. A. Lott, and D. Bimberg, "Energy efficient 850 nm VCSELs for error-free 30 Gb/s operation across 500 m of multimode optical fiber with 85 fJ of dissipated energy per bit," in Optical Interconnects Conference, Santa Fe, NM, USA, 2013, pp. 13-14.
[17] J. A. Lott, A. S. Payusov, S. A. Blokhin, P. Moser, N. N. Ledentsov, and D. Bimberg, "Arrays of 850 nm photodiodes and vertical cavity surface emitting lasers for 25 to 40 Gbit/s optical interconnects," physica status solidi (c), vol. 9, No. 2, pp. 290-293, February 2012.
[18] C. Xie, J. Kan, S. Huang, L. Wang, N. Li, C. C. Chen, et al., "850 nm VCSEL and PD for ultra high speed data communication over multimode fiber," SEI Tech. Rev, vol. 77, pp. 69-73, October 2013.
[19] H.-S. Lee, J.-Y. Park, S.-M. Cha, S.-S. Lee, G.-S. Hwang, and Y.-S. Son, "Ribbon plastic optical fiber linked optical transmitter and receiver modules featuring a high alignment tolerance," Optics express, vol. 19, No. 5, pp. 4301-4309, February 2011.
[20] R. Soref, "The past, present, and future of silicon photonics," IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, No. 6, pp. 1678-1687, November/December 2006.
[21] M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, et al., "Hybrid silicon photonic integrated circuit technology," IEEE Journal of Selected Topics in Quantum Electronics, vol. 19, No. 4, p. 6100117, July/August 2013.
[22] D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, P. Westbergh, et al., "64Gb/s Transmission over 57m MMF using an NRZ Modulated 850nm VCSEL," in Optical Fiber Communications Conference and Exhibition (OFC), San Francisco, CA, USA, 2014, p. Th3C.2.
[23] P. Westbergh, R. Safaisini, E. Haglund, B. Kogel, J. S. Gustavsson, A. Larsson, et al., "High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s," Electronics Letters, vol. 48, No. 18, pp. 1145-1147, August 2012.
[24] P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, and A. Joel, "High-speed 850 nm VCSELs with 28 GHz modulation bandwidth for short reach communication," in SPIE OPTO, San Francisco, California, USA, 2013, pp. 86390X-86390X-6.
[25] P. Westbergh, R. Safaisini, E. Haglund, Johan S. Gustavsson, A. Larsson, M. Geen, et al., "High-Speed Oxide Confined 850-nm VCSELs Operating Error-Free at 40 Gb/s up to 85 °C," IEEE Photonics Technology Letters, vol. 25, No. 8, pp. 768-771, April 2013.
[26] P. Wolf, P. Moser, G. Larisch, H. Li, J. A. Lott, and D. Bimberg, "Energy efficient 40 Gbit/s transmission with 850 nm VCSELs at 108 fJ/bit dissipated heat," Electronics Letters, vol. 49, No. 10, pp. 666-667, May 2013.
[27] P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, et al., "56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s," Electronics Letters, vol. 48, No. 20, pp. 1292-1294, September 2012.
[28] J. S. Gustavsson, A. Haglund, J. Bengtsson, P. Modh, and A. Larsson, "Dynamic behavior of fundamental-mode stabilized VCSELs using a shallow surface relief," IEEE Journal of Quantum Electronics, vol. 40, No. 6, pp. 607-619, June 2004.
[29] P. Westbergh, J. S. Gustavsson, A. Larsson, T. F. Taunay, L. Bansal, and L. Gruner-Nielsen, "Crosstalk characteristics and performance of VCSEL array for multicore fiber interconnects," IEEE Journal of Selected Topics in Quantum Electronics, vol. 21, No. 6, pp. 429-435, November/December 2015.
[30] D. M. Kuchta, "High-Capacity VCSEL Links," in Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, USA, 2017, p. Tu3C. 4.
[31] S. Nakagawa, D. Kuchta, C. Schow, R. John, L. A. Coldren, and Y.-C. Chang, "1.5 mW/Gbps low power optical interconnect transmitter exploiting high-efficiency VCSEL and CMOS driver," in Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 2008, p. OThS3.
[32] D. Molin, F. Achten, M. Bigot, A. Amezcua-Correa, and P. Sillard, "WideBand OM4 multi-mode fiber for next-generation 400Gbps data communications," in European Conference on Optical Communication (ECOC), Cannes, France, 2014, pp. 1-3.
[33] S. M. R. Motaghiannezam, I. Lyubomirsky, H. Daghighian, C. Kocot, T. Gray, J. TatuM, et al., "180 Gbps PAM4 VCSEL transmission over 300m wideband OM4 fibre," in Optical Fiber Communications Conference and Exhibition (OFC), Anaheim, CA, USA, 2016, p. Th3G.2.
[34] W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. R. Hadley, "Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers," IEEE Journal of Quantum Electronics, vol. 33, No. 10, pp. 1810-1824, October 1997.
[35] Y. H. Lee, J. L. Jewell, B. Tell, K. F. Brown-Goebeler, A. Scherer, J. P. Harbison, et al., "Effects of etch depth and ion implantation on surface emitting microlasers," Electronics Letters, vol. 26, No. 4, pp. 225-227, February 1990.
[36] B. J. Thibeault, T. A. Strand, T. Wipiejewski, M. G. Peters, D. B. Young, S. W. Corzine, et al., "Evaluating the effects of optical and carrier losses in etched?post vertical cavity lasers," Journal of applied physics, vol. 78, No. 10, pp. 5871-5875, August 1995.
[37] M. Yazdanypoor and A. Gholami, "Optimizing Optical Output Power of Single-Mode VCSELs Using Multiple Oxide Layers," IEEE Journal of Selected Topics in Quantum Electronics, vol. 19, No. 4, p. 1701708, July/August 2013.
[38] E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, and A. Larsson, "High-speed VCSELs with strong confinement of optical fields and carriers," Journal of Lightwave Technology, vol. 34, No. 2, pp. 269-277, January 2016.
[39] Y.-C. Chang and L. A. Coldren, "Efficient, high-data-rate, tapered oxide-aperture vertical-cavity surface-emitting lasers," IEEE Journal of Selected Topics in Quantum Electronics, vol. 15, No. 3, pp. 704-715, May/June 2009.
[40] A. Larsson, J. S. Gustavsson, E. Haglund, E. P. Haglund, T. Lengyel, and E. Simpanen, "High-speed VCSELs for OOK and multilevel PAM modulation," in IEEE Photonics Conference (IPC), Orlando, FL, USA, 2017, pp. 355-356.
[41] M. Liu, C. Y. Wang, M. Feng, and N. Holonyak, "850 nm oxide-confined VCSELs with 50 Gb/s error-free transmission operating up to 85 °C," in Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 2016, p. SF1L.6.
[42] G. Larisch, P. Moser, J. A. Lott, and D. Bimberg, "Impact of photon lifetime on the temperature stability of 50 Gb/s 980 nm VCSELs," IEEE Photonics Technology Letters, vol. 28, No. 21, pp. 2327-2330, July 2016.
[43] P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, and D. Bimberg, "Error-free 46 Gbit/s operation of oxide-confined 980 nm VCSELs at 85 °C," Electronics Letters, vol. 50, No. 19, pp. 1369-1371, September 2014.
[44] E. Haglund, A. Haglund, P. Westbergh, J. S. Gustavsson, B. Kogel, and A. Larsson, "25 Gbit/s transmission over 500 m multimode fibre using 850 nm VCSEL with integrated mode filter," Electronics Letters, vol. 48, No. 9, pp. 517-519, August 2012.
[45] A. Furukawa, S. Sasaki, M. Hoshi, A. Matsuzono, K. Moritoh, and T. Baba, "High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure," Applied Physics Letters, vol. 85, No. 22, pp. 5161-5163, November 2004.
[46] D. Zhou and L. J. Mawst, "High-power single-mode antiresonant reflecting optical waveguide-type vertical-cavity surface-emitting lasers," IEEE Journal of Quantum Electronics, vol. 38, No. 12, pp. 1599-1606, December 2002.
[47] A. Haglund, J. S. Gustavsson, P. Modh, and A. Larsson, "Dynamic mode stability analysis of surface relief VCSELs under strong RF modulation," IEEE Photonics Technology Letters, vol. 17, No. 8, pp. 1602-1604, August 2005.
[48] C. C. Chen, S. J. Liaw, and Y. J. Yang, "Stable single-mode operation of an 850-nm VCSEL with a higher order mode absorber formed by shallow Zn diffusion," IEEE Photonics Technology Letters, vol. 13, No. 4, pp. 266-268, April 2001.
[49] F. Mederer, I. Ecker, J. Joos, M. Kicherer, H. J. Unold, K. J. Ebeling, et al., "High performance selectively oxidized VCSELs and arrays for parallel high-speed optical interconnects," IEEE transactions on advanced packaging, vol. 24, No. 4, pp. 442-449, November 2001.
[50] T. G. Dziura, Y. J. Yang, R. Fernandez, and S. C. Wang, "Singlemode surface emitting laser using partial mirror disordering," Electronics Letters, vol. 29, No. 14, pp. 1236-1237, July 1993.
[51] P. D. Floyd, M. G. Peters, L. A. Coldren, and J. L. Merz, "Suppression of higher-order transverse modes in vertical-cavity lasers by impurity-induced disordering," IEEE Photonics Technology Letters, vol. 7, No. 12, pp. 1388-1390, December 1995.
[52] J.-W. Shi, L.-C. Yang, C.-C. Chen, Y.-S. Wu, S.-H. Guol, and Y.-J. Yang, "Minimization of damping in the electrooptic frequency response of high-speed Zn-diffusion single-mode vertical-cavity surface-emitting lasers," IEEE Photonics Technology Letters, vol. 19, No. 24, pp. 2057-2059, December 2007.
[53] J.-W. Shi, C.-C. Chen, Y.-S. Wu, S. H. Guol, and Y.-J. Yang, "The influence of Zn-diffusion depth on the static and dynamic behavior of Zn-diffusion high-speed vertical-cavity surface-emitting lasers at an 850 nm wavelength," IEEE Journal of Quantum Electronics, vol. 7, No. 45, pp. 800-806, July 2009.
[54] R. W. Herrick, A. Dafinca, P. Farthouat, A. A. Grillo, S. J. McMahon, and A. R. Weidberg, "Corrosion-based failure of oxide-aperture VCSELs," IEEE Journal of Quantum Electronics, vol. 49, No. 12, pp. 1045-1052, December 2013.
[55] H. Li, P. Wolf, P. Moser, G. Larisch, A. Mutig, J. A. Lott, et al., "Impact of the quantum well gain-to-cavity etalon wavelength offset on the high temperature performance of high bit rate 980-nm VCSELs," IEEE Journal of Quantum Electronics, vol. 50, No. 8, pp. 613-621, August 2014.
[56] H. Soda, K.-i. Iga, C. Kitahara, and Y. Suematsu, "GaInAsP/InP surface emitting injection lasers," Japanese Journal of Applied Physics, vol. 18, No. 12, p. 2329, August 1979.
[57] M. Ogura, W. Hsin, M. C. Wu, S. Wang, o. R. Whinnery, S. C. Wang, et al., "Surface?emitting laser diode with vertical GaAs/GaAlAs quarter?wavelength multilayers and lateral buried heterostructure," Applied physics letters, vol. 51, No. 21, pp. 1655-1657, September 1987.
[58] H. Hatakeyama, T. Anan, T. Akagawa, K. Fukatsu, N. Suzuki, K. Tokutome, et al., "Highly Reliable High-Speed 1.1-μm-Range VCSELs With InGaAs/GaAsP-MQWs," IEEE Journal of Quantum Electronics, vol. 46, No. 6, pp. 890-897, June 2010.
[59] J. Guenter, B. Hawkins, R. Hawthorne, and G. Landry, "Reliability of VCSELs for > 25Gb/s," in Optical Fiber Communications Conference and Exhibition (OFC), San Francisco, CA, USA, 2014, p. M3G.2.
[60] P. Westbergh, J. S. Gustavsson, A. Haglund, A. Larsson, F. Hopfer, G. Fiol, et al., "32 Gbit/s multimode fibre transmission using high-speed, low current density 850 nm VCSEL," Electronics letters, vol. 45, No. 7, pp. 366-368, March 2009.
[61] P. Westbergh, J. S. Gustavsson, A. Haglund, M. Skold, A. Joel, and A. Larsson, "High-speed, low-current-density 850 nm VCSELs," IEEE Journal of Selected Topics in Quantum Electronics, vol. 15, No. 3, pp. 694-703, April 2009.
[62] S. B. Healy, E. P. O′Reilly, J. S. Gustavsson, P. Westbergh, A. Haglund, A. Larsson, et al., "Active region design for high-speed 850-nm VCSELs," IEEE Journal of Quantum Electronics, vol. 46, No. 4, pp. 506-512, April 2010.
[63] K. Uomi, "Modulation-doped multi-quantum well (MD-MQW) lasers. I. Theory," Japanese journal of applied physics, vol. 29, No. 1R, p. 81, January 1990.
[64] K. Uomi, T. Mishima, and N. Chinone, "Modulation-doped multi-quantum well (MD-MQW) lasers. II. Experiment," Japanese journal of applied physics, vol. 29, No. 1R, p. 88, January 1990.
[65] L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode lasers and photonic integrated circuits, 2 nd ed. New York, NY, USA: Wiley, 1995.
[66] N. Hatori, A. Mizutani, N. Nishiyama, A. Matsutani, T. Sakaguchi, F. Motomura, et al., "An over 10-Gb/s transmission experiment using a p-type delta-doped InGaAs-GaAs quantum-well vertical-cavity surface-emitting laser," IEEE Photonics Technology Letters, vol. 10, No. 2, pp. 194-196, February 1998.
[67] A. Schonfelder, S. Weisser, I. Esquivias, J. D. Ralston, and J. Rosenzweig, "Theoretical investigation of gain enhancements in strained In0.35Ga0.65As/GaAs MQW lasers via p-doping," IEEE Photonics Technology Letters, vol. 6, No. 4, pp. 475-478, April 1994.
[68] Y. Zheng, C.-H. Lin, A. V. Barve, and L. A. Coldren, "P-type δ-doping of highly-strained VCSELs for 25 Gbps operation," in IEEE Photonics Conference (IPC), Burlingame, CA, USA, 2012, pp. 131-132.
[69] K.-L. Chi, D.-H. Hsieh, J.-L. Yen, X.-N. Chen, J. J. Chen, and H.-C. Kuo, "850 nm VCSELs with P-type-Doping in the Active Layers for Improved High-Speed and High-Temperature Performance," IEEE Journal of Quantum Electronics, vol. 9, p. 19, November 2016.
[70] H. Nishimoto, M. Yamaguchi, I. Mito, and K. Kobayashi, "High-frequency response for DFB LD due to a wavelength detuning effect," Journal of Lightwave Technology, vol. 5, No. 10, pp. 1399-1402, October 1987.
[71] M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, et al., "Recent advances in DFB lasers for ultradense WDM applications," IEEE Journal of Selected Topics in Quantum Electronics, vol. 10, No. 2, pp. 312-320, March/April 2004.
[72] K. Doi, T. Shindo, M. Futami, T. Amemiya, N. Nishiyama, and S. Arai, "Thermal analysis of self-heating effect in GaInAsP/InP membrane DFB laser on Si substrate," in IEEE Photonics Conference (IPC), Burlingame, CA, USA, 2012, p. Th02.
[73] D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, et al., "Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers," IEEE Journal of Quantum Electronics, vol. 29, No. 6, pp. 2013-2022, June 1993.
[74] R. Safaisini, J. R. Joseph, and K. L. Lear, "Scalable high-CW-power high-speed 980-nm VCSEL arrays," IEEE Journal of Quantum Electronics, vol. 46, No. 11, pp. 1590-1596, November 2010.
[75] J. T. Getty, E. J. Skogen, L. A. Johansson, and L. A. Coldren, "CW operation of 1.55-μm bipolar cascade laser with record differential efficiency, low threshold, and 50-/spl Omega/matching," IEEE Photonics Technology Letters, vol. 15, No. 11, pp. 1513-1515, November 2003.
[76] P. Modh, S. Galt, J. Gustavsson, S. Jacobsson, and A. Larsson, "Linear cascade VCSEL arrays with high differential efficiency and low differential resistance," IEEE photonics technology letters, vol. 18, No. 1, pp. 100-102, January 2006.
[77] J.-W. Shi, H.-W. Huang, F.-M. Kuo, J.-K. Sheu, W.-C. Lai, and M. L. Lee, "Very-High Temperature (200 °C) and High-Speed Operation of Cascade GaN-Based Green Light-Emitting Diodes With an InGaN Insertion Layer," IEEE Photonics Technology Letters, vol. 22, No. 14, pp. 1033-1035, July 2010.
[78] P. Westbergh, J. S. Gustavsson, and A. Larsson, "VCSEL arrays for multicore fiber interconnects with an aggregate capacity of 240 Gbit/s," IEEE Photon. Technol. Lett, vol. 27, No. 3, pp. 296-299, February 2015.
[79] S.-Y. Hu, J. Ko, and L. A. Coldren, "High-performance densely packed vertical-cavity photonic integrated emitter arrays for direct-coupled WDM applications," IEEE Photonics Technology Letters, vol. 10, No. 6, pp. 766-768, June 1998.
[80] J.-L. Yen, X.-N. Chen, K.-L. Chi, J. Chen, and J.-W. Shi, "850 nm Vertical-Cavity Surface-Emitting Laser Arrays With Enhanced High-Speed Transmission Performance Over a Standard Multimode Fiber," Journal of Lightwave Technology, vol. 35, No. 15, pp. 3242-3249, August 2017.
[81] A. Haglund, C. Carlsson, J. S. Gustavsson, J. Halonen, and A. Larsson, "A comparative study of the high-speed digital modulation performance of single-and multimode oxide confined VCSELs for free space optical interconnects," in Proc. SPIE, San Jose, CA, USA, 2002, pp. 272-280.
[82] R. Szweda, "VCSELs resurgent," III-Vs Review, vol. 17, No. 8, pp. 28-31, November 2004.
[83] J. A. Reagan, H. Liu, and J. F. McCalmont, "Laser diode based new generation lidars," in Geoscience and Remote Sensing Symposium, Lincoln, NE, USA, 1996, pp. 1535-1537.
[84] J.-F. Seurin, G. Xu, B. Guo, A. Miglo, Q. Wang, P. Pradhan, et al., "Efficient vertical-cavity surface-emitting lasers for infrared illumination applications," in Proc. SPIE, San Francisco, California, USA, 2011, p. 79520G.
[85] E. W. Young, K. D. Choquette, S. L. Chuang, K. M. Geib, A. J. Fischer, and A. A. Allerman, "Single-transverse-mode vertical-cavity lasers under continuous and pulsed operation," IEEE Photonics Technology Letters, vol. 13, No. 9, pp. 927-929, September 2001.
[86] A. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, and A. Larsson, "Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief," IEEE Photonics Technology Letters, vol. 16, No. 2, pp. 368-370, February 2004.
[87] S. Noda, "Photonic crystal lasers—ultimate nanolasers and broad-area coherent lasers [Invited]," Journal of the Optical Society of America B, vol. 27, No. 11, pp. B1-B8, November 2010.
[88] J.-W. Shi, C.-C. Chen, Y.-S. Wu, S.-H. Guol, C. Kuo, and Y.-J. Yang, "High-power and high-speed Zn-diffusion single fundamental-mode vertical-cavity surface-emitting lasers at 850-nm wavelength," IEEE Photonics Technology Letters, vol. 20, No. 13, pp. 1121-1123, July 2008.
[89] H. A. Haus, Waves and fields in optoelectronics. Englewood Cliffs, New Jersey, USA: Prentice-Hall, 1984.
[90] C. F. Lam, H. Liu, B. Koley, X. Zhao, V. Kamalov, and V. Gill, "Fiber optic communication technologies: What′s needed for datacenter network operations," IEEE Communications Magazine, vol. 48, No. 7, p. 32~39, July 2010.
[91] I. Lyubomirsky, W. A. Ling, R. Rodes, H. M. Daghighian, and C. Kocot, "56 Gb/s transmission over 100m OM3 using 25G-class VCSEL and discrete multi-tone modulation," in IEEE Optical Interconnects Conference, San Diego, CA, USA, 2014, p. TuC2.
[92] Y. Liu, W.-C. Ng, B. Klein, and K. Hess, "Effects of the spatial nonuniformity of optical transverse modes on the modulation response of vertical-cavity surface-emitting lasers," IEEE Journal of Quantum Electronics, vol. 39, No. 1, pp. 99-108, January 2003.
[93] P. B. Subrahmanyam, Y. Zhou, L. Chrostowski, and C. J. Chang-Hasnain, "VCSEL tolerance to optical feedback," Electronics Letters, vol. 41, No. 21, pp. 1178-1179, October 2005.
[94] A. Murata and S. Aoki, "A DFB-LD module integrated with 60 dB optical isolator for coherent lightwave transmission systems," IEEE Photonics Technology Letters, vol. 1, No. 8, pp. 221-223, August 1989.
[95] F. J. Achten, T. Boone, P. Pepeljugoski, C. Brokke, and P. Pleunis, "High resolution DMD measurement Set-up for 850-nm laser-optimized graded index multimode optical fibers characterization: A comparison," Journal of optical communications, vol. 25, No. 6, pp. 226-229, December 2004.
[96] G. Giaretta, R. Michalzik, and A. J. Ritger, "Long Distance (2.8 km), short wavelength (0.85 μm) data transmission at 10Gb/sec over new generation high bandwidth multimode fiber," in Conference on Lasers and Electro-Optics (CLEO), San Francisco, CA, USA, 2000, pp. 683-684.
[97] P. Pepeljugoski, D. Kuchta, Y. Kwark, P. Pleunis, and G. Kuyt, "15.6-Gb/s transmission over 1 km of next generation multimode fiber," IEEE Photonics Technology Letters, vol. 14, No. 5, pp. 717-719, May 2002.
[98] P. Moser, J. A. Lott, P. Wolf, G. Larisch, A. Payusov, N. N. Ledentsov, et al., "99 fJ/(bit.km) Energy to Data-Distance Ratio at 17 Gb/s Across 1 km of Multimode Optical Fiber With 850-nm Single-Mode VCSELs," IEEE Photonics Technology Letters, vol. 24, No. 1, pp. 19-21, January 2012.
[99] J.-W. Shi, J.-C. Yan, J.-M. Wun, J. Chen, and Y.-J. Yang, "Oxide-relief and Zn-diffusion 850-nm vertical-cavity surface-emitting lasers with extremely low energy-to-data-rate ratios for 40 Gbit/s operations," IEEE Journal of Selected Topics in Quantum Electronics, vol. 19, No. 2, p. 7900208, March/April 2013.
[100] M. P. Tan, J. A. Lott, S. T. M. Fryslie, N. N. Ledentsov, D. Bimberg, and K. D. Choquette, "25 Gb/s Transmission over 1-km OM4 multimode fiber using a single mode photonic crystal VCSEL," in Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 2013, p. CTu3L.3.
[101] R. Stevenson, "Epistar unveils efficient infrared LED," compound semiconductor magazine, vol. 20, No. 1, p. 7, January/February 2014.
[102] F. Koyama, S. Kinoshita, and K. Iga, "Room?temperature continuous wave lasing characteristics of a GaAs vertical cavity surface?emitting laser," Applied Physics Letters, vol. 55, No. 3, pp. 221-222, July 1989.
[103] M. Orenstein, E. Kapon, J. P. Harbison, L. T. Florez, and N. G. Stoffel, "Large two?dimensional arrays of phase?locked vertical cavity surface emitting lasers," Applied Physics Letters, vol. 60, No. 13, pp. 1535-1537, March 1992.
[104] M. E. Warren, P. L. Gourley, G. R. Hadley, G. A. Vawter, T. M. Brennan, B. E. Hammons, et al., "On?axis far?field emission from two?dimensional phase?locked vertical cavity surface?emitting laser arrays with an integrated phase?corrector," Applied Physics Letters, vol. 61, No. 13, pp. 1484-1486, September 1992.
[105] L. Bao, N.-H. Kim, L. J. Mawst, N. N. Elkin, V. N. Troshchieva, D. V. Vysotsky, et al., "Near-diffraction-limited coherent emission from large aperture antiguided vertical-cavity surface-emitting laser arrays," Applied Physics Letters, vol. 84, No. 3, pp. 320-322, January 2004.
[106] D. F. Siriani and K. D. Choquette, "Electronically controlled two-dimensional steering of in-phase coherently coupled vertical-cavity laser arrays," IEEE Photonics Technology Letters, vol. 23, No. 3, pp. 167-169, February 2011.
[107] K. Otsuka, K. Sakai, Y. Kurosaka, J. Kashiwagi, W. Kunishi, D. Ohnishi, et al., "High-power surface-emitting photonic crystal laser," in Lasers and Electro-Optics Society (LEOS), Lake Buena Vista, FL, USA, 2007, pp. 562-563.
[108] R. Safaisini, E. Haglund, P. Westbergh, J. S. Gustavsson, and A. Larsson, "20 Gbit/s data transmission over 2 km multimode fibre using 850 nm mode filter VCSEL," Electronics Letters, vol. 50, No. 1, pp. 40-42, January 2014.
[109] http://www.ieee802.org/3/NGAUTO/public/adhoc/index.html.
[110] B. M. Hawkins, R. A. Hawthorne, J. K. Guenter, J. A. Tatum, and J. R. Biard, "Reliability of various size oxide aperture VCSELs," in IEEE Electronic Components and Technology Conference, San Diego, CA, USA, 2002, pp. 540-550.
[111] J. R. Kropp, G. Steinle, G. Schafer, V. A. Shchukin, N. N. Ledentsov, J. P. Turkiewicz, et al., "Accelerated aging of 28 Gb s? 1 850 nm vertical-cavity surface-emitting laser with multiple thick oxide apertures," Semiconductor Science and Technology, vol. 30, No. 4, p. 045001, February 2015.
[112] W. Bo, Z. Xian, M. Yanan, L. Jun, Z. Kangping, Q. Shaofeng, et al., "Close to 100 Gbps discrete multitone transmission over 100m of multimode fiber using a single transverse mode 850nm VCSEL," in Vertical-Cavity Surface-Emitting Lasers XX, 2016, p. 97660K.
[113] T. Takamori, T. Fukunaga, J. Kobayashi, K. Ishida, and H. Nakashima, "Electrical and optical properties of Si doped GaAs grown by molecular beam epitaxy on (311) substrates," Japanese journal of applied physics, vol. 26, No. 7R, p. 1097, April 1987.
[114] P. N. Uppal, J. S. Ahearn, and D. P. Musser, "Molecular?beam?epitaxial growth of GaAs (331)," Journal of applied physics, vol. 62, No. 9, pp. 3766-3771, July 1987.
[115] J. M. Ballingall and C. E. C. Wood, "Crystal orientation dependence of silicon autocompensation in molecular beam epitaxial gallium arsenide," Applied Physics Letters, vol. 41, No. 10, pp. 947-949, September 1982.
[116] S. Subbanna, H. Kroemer, and J. L. Merz, "Molecular?beam?epitaxial growth and selected properties of GaAs layers and GaAs/(Al, Ga) As superlattices with the (211) orientation," Journal of applied physics, vol. 59, No. 2, pp. 488-494, January 1986.
[117] R. Notzel, N. N. Ledentsov, L. Daweritz, M. Hohenstein, and K. Ploog, "Direct synthesis of corrugated superlattices on non-(100)-oriented surfaces," Physical review letters, vol. 67, No. 27, p. 3812, December 1991.
[118] R. Notzel, N. N. Ledentsov, and K. Ploog, "Confined excitons in corrugated GaAs/AlAs superlattices," Physical Review B, vol. 47, No. 3, p. 1299, January 1993.
[119] N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, "Progress in epitaxial growth and performance of quantum dot and quantum wire lasers," Journal of lightwave technology, vol. 26, No. 11, pp. 1540-1555, June 2008.
[120] L. N. N, V. A. Shchukin, Y. M. Shernyakov, M. M. Kulagina, A. S. Payusov, N. Y. Gordeev, et al., "Green, yellow and bright red (In, Ga, Al) P–GaP diode lasers grown on high-index GaAs substrates," in High-Power Diode Laser Technology XV, San Francisco, CA, USA, 2017, p. 100860L. |