博碩士論文 104221008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:76 、訪客IP:18.119.137.175
姓名 廖鈞妙(Jun-Miao Liao)  查詢紙本館藏   畢業系所 數學系
論文名稱 非線性守恆律中擊波解之非守恆積分的不穩定性
(Instability of Non-Conservative Product to Shock Wave Solutions of Scalar Balance Laws With Singular Source Terms)
相關論文
★ 氣流的非黏性駐波通過不連續管子之探究★ An Iteration Method for the Riemann Problem of Some Degenerate Hyperbolic Balance Laws
★ 影像模糊方法在蝴蝶辨識神經網路中之應用★ 單一非線性平衡律黎曼問題廣義解的存在性
★ 非線性二階常微方程組兩點邊界值問題之解的存在性與唯一性★ 對接近音速流量可壓縮尤拉方程式的柯西問題去架構區間逼近解
★ 一些退化擬線性波動方程的解的性質.★ 擬線性波方程中片段線性初始值問題的整體Lipchitz連續解的
★ 水文地質學的平衡模型之擴散對流反應方程★ 非線性守恆律的擾動Riemann 問題的古典解
★ BBM與KdV方程初始邊界問題解的週期性★ 共振守恆律的擾動黎曼問題的古典解
★ 可壓縮流中微黏性尤拉方程激波解的行為★ 非齊次雙曲守恆律系統初始邊界值問題之整域弱解的存在性
★ 有關非線性平衡定律之柯西問題的廣域弱解★ 單一雙曲守恆律的柯西問題熵解整體存在性的一些引理
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在這篇論文中,我們考慮單一非線性守恆律的廣義黎曼問題解,
此一守恆律的源項在分佈理論中是奇異的,
代表它是delta函數和非連續函數的乘積。在這篇論文中,
我們將展示一個例子去證明此守恆律中的非守恆乘積是不穩定的。
也就是它的正則型式的積分有不同的值。當解帶有震波時,它們的值取決於震波正則模式的選取。
摘要(英) In this thesis, we consider the generalized Riemann solutions of scalar nonlinear balance laws
with singular source terms. The source term is singular in the
sense that it is a product of delta function and a discontinuous
function, which is undefined in distribution. We demonstrate an example to show
that the non-conservative product $a′g(u)$ is unstable in the sense that the integral of
regularization $a_{varepsilon}′g(u_{varepsilon})$ for $a′g(u)$ may have multiple values due to the forms $a_varepsilon$, $u_varepsilon$ when $u$ consists of shocks.
關鍵字(中) ★ 非線性守恆律
★ 擊波解
★ 非守恆積分
★ 不穩定性
關鍵字(英) ★ Non-Conservative Product
★ Shock Wave Solutions
★ Singular Source Terms
★ Scalar Balance Laws
★ Instability
論文目次 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Generalized Riemann Solutions and Their Regularization . . . . . . . . 4

3 Instability of Non-conservative Product . . . . . . . . . . . . . . . . . . . 11

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
參考文獻 [1] Yuan Chang, Shih-Wei Chou, John M. Hong and Ying-Chieh Lin, Existence and
uniqueness of Lax-type solutions to the Riemann problem of scalar balance law with
singular source term, Taiwanese J. Math. 17 (2013), no. 2, pp. 431-464.

[2] C. Dafermos, Generalized characteristics and the structure of solutions of hyperbolic
conservation laws, Ind. Univ. Math. J. 26 (1977), pp. 1097-1119.

[3] C. Dafermos, Solutions of the Riemann problem for a class of conservation laws by
the viscosity method, Arch. Ration. Mech. Anal., 52 (1973), pp. 1-9.

[4] C. Dafermos and L. Hsiao, Hyperbolic systems of balance laws with inhomogeneity
and dissipation, Indiana U. Math. Journal, 31, No. 4 (1982), pp. 471-491.

[5] G. Dal Maso, P. LeFloch and F. Murat, Definition and weak stability of nonconser-
vative products, J. Math. Pure. Appl., 74 (1995), pp. 483-548.

[6] Ronald J. DiPerna, Measure-Valued Solutions to Conservation Laws, Arch. Ration.
Mech. Anal., 88 , No. 3 (1985), pp. 223-270.

[7] J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations,
Comm. Pure Appl. Math., 18 (1965), pp. 697-715.

[8] J. M. Hong, An extension of Glimm’s method to inhomogeneous strictly hyperbolic
systems of conservation laws by ”weaker than weak” solutions of the Riemann prob-
lem, J. Diff. Equations, 222 (2006), pp. 515-549.

[9] J. M. Hong and B. Temple, A Bound on the Total Variation of the Conserved Quan-
tities for Solutions of a General Resonant Nonlinear Balance Law, SIAM J. Appl.
Math. 64, No. 3 (2004), pp. 819-857.

[10] J. M. Hong and P. G. LeFloch, A version of Glimm method based on generalized
Riemann problem, Portugaliae Mathematica 64, Fasc. 2 (2007), pp. 199-236.
[11] E. Isaacson and B. Temple, Convergence of 2 × 2 by Godunov method for a general
resonant nonlinear balance law, SIAM J. Appl. Math. 55 (1995), pp. 625-640.

[12] K. T. Joseph and P. G. LeFloch, Singular limits for the Riemann problem: gen-
eral diffusion, relaxation, and boundary condition, in ” new analytical approach to
multidimensional balance laws”, O. Rozanova ed., Nova Press, 2004.

[13] S. Kruzkov, First order quasilinear equations with several space variables, Math.
USSR Sbornik, 10 (1970), pp. 217-243.

[14] P. D. Lax, Hyperbolic system of conservation laws, II, Comm. Pure Appl. Math., 10
(1957), pp. 537-566.

[15] P. G. LeFloch, Entropy weak solutions to nonlinear hyperbolic systems under non-
conservative form, Comm. Partial Differential Equations, 13 (1988), pp. 669-727.

[16] T. P. Liu, The Riemann problem for general systems of conservation laws, J. Diff.
Equations, 18 (1975), pp. 218-234.

[17] T. P. Liu, Quaslinear hyperbolic systems, Comm. Math. Phys., 68 (1979), pp. 141-
172.

[18] C. Mascia and C. Sinestrari, The perturbed Riemann problem for a balance law,
Advances in Differential Equations, 2 (1997), pp. 779-810.

[19] O. A. Oleinik, Discontinuous solutions of nonlinear differential equations, Amer.
Math. Soc. Transl. Ser. 2, 26 (1957), pp. 95-172.

[20] C. Sinestrari, The Riemann problem for an inhomogeneous conservation law without
convexity, Siam J. Math. Anal., 28, No. 1, (1997), pp. 109-135.

[21] C. Sinestrari, Asymptotic profile of solutions of conservation laws with source, Diff.
and Integral Equations, 9, No. 3, (1996), pp. 499-525.

[22] J. Smoller, Shock waves and reaction-dffusion equations, Springer, New York, 1983.

[23] A. Tzavaras, Waves interactions and variation estimates for self-similar zero viscosity
limits in systems of conservation laws, Arch. Ration. Mech. Anal., 135 (1996), pp.
1-60.

[24] A. Volpert, The space BV and quasilinear equations, Maths. USSR Sbornik 2 (1967),
pp. 225-267.
指導教授 洪盟凱(Meng-Kai Hong) 審核日期 2018-6-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明