參考文獻 |
[1] Weiwei Ao, Chang-Shou Lin and Juncheng Wei: On non-topological solutions of the A2
and B2 Chern-Simons system, Mem. Amer. Math. Soc. 239 (2016), no. 1132
[2] Fursikov, A. V., Imanuvilov, O. Yu.: Local Exact Boundary Controllability of the Boussinesq
Equation. SIAM Journal of Control and Optimization 36, 391-421 (1998).
[3] H.Berestycki, P.-L.Lions. Nonlinear scalar eld equations. I. Existence of a ground state.
Arch.Ration.Mech.Anal(1983). 82, pp313-345
[4] H.Berestycki and P.-L. Lions; Nonlinear scalar eld equations. I. Existence of a ground
state. Arch. Rational Mech. Anal. 82 (1983),313-345, 379-386
[5] LUIS A. CAFFARELLI , BASILIS GIDAS and JOEL SPRUCK, Asymptotic symmetry
and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure
Appl. Math. 42 (1989), 271{297.
[6] Chih-Her Chern, Jann-Long Chern, Eiji Yanagida Structure of Singular Solutions for Nonlinear
Elliptic Equations with the Critical Potential. Preprint
[7] Chiun-Chuan Chen and Theodore Kolokolnikov Simple PDE model of spot replication in
any dimension SIAM J. MATH. ANAL. Vol44, No5, (2012), pp. 3364-3593.
[8] C.-C. Chen and C.-S. Lin, On the asymptotic symmetry of singular solutions of the scalar
curvature equations, Math. Ann. 313 (1999), 229{245.
[9] Chiun-Chuan Chen, Chih-Chiang Huang, Theodore Kolokolnikov Critical exponent of a
simple model of spot replication J.Dierential Equations 263 (2017) 5507-5520
[10] Chih-Her Chen, Gyeongha Hwang and Jann-Long Chern Classication of radial solutions
for the minimizer of the best constant in Cafarelli-Kohn-Nirenberg inequality. preprint
[11] Wenxiong,Chen, Congming,Li.,Wenxiong: Qualitative properties of solutions to some nonlinear
elliptic equations in R2, Duke Math. J. 71 427-439 (1993).
[12] Dongho Chae, Oleg Yu. Imanuvilov: The existence of non-topological multivortex solutions
in the relativistic self-dual Chern-Simons theory, Comm. Math. Phys. 215 (2000) 119-142.
[13] Dongho Chae: On the elliptic system arising from a self-gravitating Born-Infeld Abelian
Higgs theory, Nonlinearity 18 (2005) 1823-1833.
[14] Jann-Long Chern, Chang-Shou Lin; Minimizers of Caarelli-Kohn-Nirenberg Inequalities
with the Singularity on the Boundary Arch.Rational Mech.Anal.197(2010)401-432 Digital
Object Identier(DOI) 10.1007/s00205-009-0269-y
[15] Janne-Long Chern and Eiji Yanagida; Singular Solutions of the Scalar Field Equation
with a Critical Exponent Geometric Properties for Parabolic and Elliptic PDE′s, Springer
Proceedings in Mathematics and Statistics 176 (2016), pp277-288
[16] Janne-Long Chern, Zhi-You Chern, Jhih-He Chern, Yong-Li Tang On the Classication of
Standing Wave Solutions for the Schrodinger equation Communications in Partial Dieren-
tial Equation (2010), pp275-301
[17] Jann-Long Chern, Eiji Yanagida Structure of the sets of regular and singular radial solutions
for a semilinear elliptic equation. J.Dierential Equations 224(2006) 440-463
[18] J.-L. Chern, Z.-Y. Chern and Y.-L. Tang, Uniqueness of nite total curvatures and the
structure of radial solutions for nonlinear elliptic equations, Transactions of the American
Mathematical Society 363 (2011), 3211-3231
[19] K.S.CHOU and C.W.CHU On the best constant for a weighted sobolev-Hardy inequality
J-London Math.Soc. (2)48(1993), no,1,137-151, http://dx.doi.,org/jlms/s2-48.1.137
MR1223899(94h:46052) Arch.Rational.Mech.Anal 105 (1989), pp243-266
[20] Kuo-Shung Cheng, Chang-ShouLin: On the conformal Gaussian curvature equation in R2,
J. Di. Eqns 146, 226-250 (1998).
[21] Kwangseok Choe. (2005): Uniqueness of the topological multivortex solution in the selfdual
in the Chern-Simons Theorem, J. Math. Phys, 46:012305.
[22] Kwangseok Choe, Namkwon Kim and Chang-Shou Lin: Existence of self-dual nontopological
solutions in the Chern-Simons Higgs model, Ann.Inst. H. Poincare Anal. Non
Lineaire 28 (2011) 837-852.
[23] Kwangseok Choe, Namkwon Kim and Chang-Shou Lin: Self-dual symmetric nontopological
solutions in the SUp3q model in R2, Commun. Math. Phys. 33 (2015), 1-37.
[24] Kwangseok Choe, Namkwon Kim and Chang-Shou Lin.: Existence of mixed type solutions
in the SUp3q Chern-Simons theory in R2, Calc. Var. Partial Dierential Equations 56 (2017)
no. 2, 56:17.
[25] Kwangseok Choe, Namkwon Kim and Chang-Shou Lin: Existence of mixed type solutions
in the Chern-Simons gauge theory of rank two in R2, Journal of Functional Analysis 273
(2017) 1734-1761.
[26] Arjen Doelman,Tasso J.Kaper,and Lambertus A.Peletier. Homoclinic furcations at the
onset of pulse replication, J.Dierential Equations, 231(2006),pp359-423
[27] Francois Genoud and Charles A.Stuart Schrodinger equations with a spatially decaying
nonlinearity:existence and stability of standing waves Ecole Polytechnique Federale deLau-
sanne CH-1015 Lausanne, Switzerland
[28] B.Gidas, Wei-Ming Ni, Nirenberg.L. Symmetry of Positive Solutions of Nonlinear Elliptic
Equations in Rn MATHEMATICAL ANALYSIS AND APPLICATIONS, PART A AD-
VANCES IN MATHEMATICS SUPPLEMENTARY STUDIES, VOL. 7A
[29] Chun-Hsiung Hsia,Chang-Shou Lin, ZHI-Qiang Wang. Asymptotic Symmetry and local
Behaviors of Solutions to a class of Anisotropic Elliptic Equations. Indiana University Math-
ematics Journal, Vol.60, No.5(2011)
[30] Genggeng Huang and Chang-Shou Lin: The existence of non-topological solutions for a
skew-symmetric Chern-Simons system, Indiana Univ. Math. J. 65 (2016), no. 2, 453-491.
[31] M.K.Kwong Uniqueness of positive solutions of u u ? up 0 in Rn.
Arch.Rational.Mech.Anal 105 (1989), pp243-266
[32] C.-S. Lin and J. V. Prajapat, Asymptotic symmetry of singular solutions of semilinear
elliptic equations, J. Dierential Equations 245 (2008), 2534{2550.
[33] C.-S. Lin Interpolation inequalities with weighs Comm.Partial Di. Equ. 11(14) 1515-
1538(1986)
[34] Caarelli,L., Kohn, R.,Nirenberg.L: First order interpolation inequalities with weighs
Composit.Math.53(3), 259-275 (1984)
[35] C.MURATOV AND V.V.OSIPOV Static spike autosolitons in the Gray-Scott model
J.Phys.A, 33(2000), pp.8893-8916
[36] Johnson,R.,Pan, X.,Yi, Y. Singular solutions of the elliptic equation u u ? up 0
Ann.Mat.Pura Appl. 166(4) (1994), pp203-225
[37] John E. Pearson Complex patterns in a simple system, Science,216(1993), pp189-192
[38] M. Hoshino and E. Yanagida, Convergence rate to singular steady states in a semilinear
parabolic equation, Nonlinear Anal. 131 (2016), 98{111.
[39] Nirenberg, L.: Topics in Nonlinear Analysis, Courant Lecture Notes in Math. 6, American
Mathematical Society, 2001.
[40] W.-M. Ni,Serrin,J. Nonexistence theorems for singular solutions of quasilinear partial differential
equations. Comm.Pure Appl.Math.39 (1986), pp379-399
[41] P. Quittner and Ph. Souplet, Superlinear Parabolic Problems. Blow-up, Global Existence
and Steady States, Birkhauser Advanced Texts, Birkhauser, Basel, 2007.
[42] S.EI,Y.NISHIURA,AND K.UEDA 2n splitting or edge eplitting?:A manner of splitting in
dissipative systems, Japan.J.Indust. Appl.Math., 18(2001),pp181-205
[43] S. Sato and E. Yanagida, Asymptotic behavior of singular solutions of a semilinear
parabolic equation, Discrete Contin. Dyn. Syst. 32 (2012), 4027{4043.
[44] Sze-Guang Yang.;Zhi-You Chen;Chih-Her Chen ; Jann-Long Chern : The Non-Topological
Solutions for The Elliptic System Arising from A Product Abelian Gauge Field Theory, In
the reviewing at Journal Nonlinearity.
[45] Tong, D., Wong, K.: J. High Energy Phys. 1401 (2014) 090.
[46] T.KOLOKOLNIKOV,M.J.WARD,AND J.WEI, The existence and stability of spike
equilibria in the one-dimensional Gray-Scott model: The pulse-splitting regime Phys.
D,202(2005), pp258-293
[47] W.-Y.Ding, W.-M.Ni. On the existence of positive entire solutions of a semilinear elliptic
equation Arch.Ration.Mech.Anal.91(1)(1986)283-308
[48] Y.NISHIURA AND D.UEYAMA A skeleton structure of self-replicating dynamics
Phys.D,130(1999), pp73-104
[49] Yang, Y.: Cosmic strings in a product Abelian gauge eld theory, Nucl. Phys. B 885 (2014)
25-33.
[50] Yang, Y.: Prescribing zeros and poles on a compact Riemann surface for a gravitationally
coupled Abelian gauge eld theory, Comm. Math. Phys. 249, 579-609 (2004).
28 |