博碩士論文 105323033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:86 、訪客IP:3.144.172.101
姓名 廖浚安(Chun-An Liao)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 新型異質接面奈米結構熱介面材料開發與應用
(Development and application of novel nano-structured thermal interface materials (TIMs))
相關論文
★ 伺服數控電動壓床壓型參數最佳化以改善碳化鎢超硬合金燒結後品質不良之研究★ 彈性元件耦合多頻寬壓電獵能器設計、製作與性能測試
★ 無心研磨製程參數優化研究★ 碳纖維樹脂基複合材料真空輔助轉注成型研究-以縮小比例(1/5)汽車引擎蓋為例
★ 精密熱鍛模擬及模具合理化分析★ 高頻元件重佈線層銅電鍍製程與光阻裂紋研究
★ 模組化滾針軸承自動組裝設備設計開發與功能驗證★ 迴轉式壓縮機消音罩吐出口位置對壓縮機低頻噪音影響之研究
★ 雷射焊補運用於壓鑄模具壽命改善研究★ 晶粒成長行為對於高功率元件可靠度改善的驗證
★ HF-ERW製管製程分析及SCADA 工業4.0運用★ 結合模流分析與實驗設計實現穩健射出成型與理想成型視窗的預測
★ 精密閥件射出成形製程開發-CAE模擬與開模驗證★ 內窺鏡施夾器夾爪熱處理斷裂分析與改善驗證
★ 物理蒸鍍多層膜刀具對於玻璃纖維強化塑膠加工磨耗研究★ 複合式類神經網路預測貨櫃船主機油耗
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究在探討開發新型異質接面奈米結構之熱介面材料 (TIMs),因高功率電子元件運作時會產生大量熱能,電子元件與散熱器接觸面會產生間隙,進而形成一層熱阻抗(Thermal resistance),因此透過開發高熱導率TIMs可將電子元件與散熱器之間間隙填補進而提升熱傳導性能,對於高功率電子元件的散熱能大幅改善並提高電子元件壽命。本研究主要分為兩部份,第一部分係將回收之2B筆芯利用球磨方式,製備再生石墨烯 (Recycled 2B),再利用網印技術將再生石墨烯作為高度拉伸和低成本的熱界面材料,探討其TIMs之水平與垂直方向之熱傳導系數,並且實際應用於IGBT與散熱片之間的溫度量測。第二部分則是將市售之石墨烯 (Exfoliated Graphite Nanoplatelets,EGN) 經過球磨處理減少平均粒徑後,所產生高品質之球磨石墨烯粉末(Ball-Milled Exfoliated Graphite Nanoplatelets,BMEGN),再利用物理氣相沉積技術(Physical vapor deposition,PVD)將金原子濺鍍於球磨石墨烯表面,發展新型異質接面奈米結構熱介面材料,並探討其球磨處理與濺鍍金原子層兩者先後順序的不同,對於所製備熱介面材料熱傳導系數的影響,並進行一系列的實驗分析,並量測TIMs之水平與垂直方向之熱傳導系數,再將TIMs實際應用於電子元件的溫度量測。
摘要(英) This study explored the development of new heterogeneous interface thermal interface materials (TIMs). High-power electronic components generate a large amount of thermal energy during operation, and gaps are formed at the contact surfaces between the electronic components and the heat sink to form a layer of thermal resistance. Therefore, by developing high thermal conductivity TIMs, the gap can be filled to improve the heat conduction performance. The study is divided into two main parts. The first part is to recycle, recycled 2B using ball milling to produce recycled nanoplatelets graphite (Recycled 2B), and then use screen printing technology to use recycled graphene as a highly stretched and low-cost thermal interface. In the second part, the commercially available exfoliated graphite nanoplatelets (EGN) was ball milled to reduce the average particle size, resulting in a high - quality ball-milled exfoliated graphite nanoplatelets (BMEGN). Physical vapor deposition (PVD) is used to develop a novel nano-structure thermal interface material. The through-plane and in-plane thermal conductivity coefficients of the TIMs were measured. Final, the TIMs was actually applied to the temperature measurement of the electronic components.
關鍵字(中) ★ 熱介面材料
★ 球磨處理
★ 再生石墨烯
★ 異質接面
★ 熱管理
關鍵字(英) ★ recycled lead graphite-pencils
★ ball-milled
★ TIMs
★ novel nano-structured
★ Thermal management
論文目次 目錄
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3 論文架構 4
第二章 文獻回顧 5
2-1 球磨處理 5
2-2 異質接面奈米結構 7
2-3 奈米材料之熱介面材料製備與應用 8
第三章 研究方法與設備 10
3-1 再生石墨烯 (recycled 2B)粉末之製備 10
3-1-2 利用網印技術製備再生石墨烯熱介面材料 12
3-2 異質接面奈米結構製備 13
3-2-2 製備異質接面奈米結構熱介面材料 15
3-3 實驗設備 17
第四章 結果與討論 21
4-1 再生石墨烯實驗分析 21
4-1-1 機械性質 21
4-1-2 掃描電子顯微鏡 (SEM) 22
4-1-3 拉曼光譜分析 (Raman spectra) 24
4-1-4 熱重分析 (TGA) 25
4-1-5 熱介面材料之熱傳導係數 26
4-1-6 應用於核研所現有15kW電力轉換器散熱實驗 28
4-2 異質接面奈米結構實驗分析 31
4-2-1 表徵與拉曼光譜分析 31
4-2-2 掃描電子顯微鏡 (SEM) 33
4-2-3 X-ray繞射分析(XRD) 35
4-2-4 熱重分析 (TGA) 37
4-2-5 熱介面材料之熱傳導係數 38
4-2-6 應用於高功率處理器散熱實驗 40
第五章 結論 42
參考文獻 44
參考文獻 [1] Chang, T.C.; Lee, S.; Fuh, Y.K.; Peng, Y.C.; Lin, Z.H. PCM based heat sinks of Paraffin/nanoplatelet graphite composite for thermal management of IGBT. Appl. Therm. Eng. 2017, 112, 1129-1136.
[2] Garimella, S.V.; Fleischer, A.S.; Murthy, J.Y.; Keshavarzi, A.; Prasher, R.; Patel, C.; Bhavnani, S.H.; Venkatasubramanian, R.; Mahajan, R.; Joshi, Y.; Sammakia, B.; Myers, B.A.; Chorosinski, L.; Baelmans, M.; Sathyamurthy, P.; Raad, P.E. Thermal challenges in next-generation electronic systems. IEEE.T. Compon. Pack. T. 2008, 31, 801–815.
[3] Skuriat, R.; Li, J. F.; Agyakwa, P.A.; Mattey, N.; Evans, P.; Johnson, C.M. Degradation of Thermal Interface Materials for High-Temperature Power Electronics Applications. Microelectron. Reliab. 2013, 53, 1933–1942.
[4] Schelling, P.K.; Shi, L. Goodson, K.E. Managing heat for electronics. Mater. Today. 2005, 8, 30–35.
[5] Kim, S.; Drzal, L.T. High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets. Sol. Energ. Mat. Sol. C. 2009, 93, 136-42.
[6] Xiang, J.; Drzal, L.T. Thermal Conductivity of Exfoliated Graphite Nanoplatelet Paper. Carbon. 2011, 49, 773–778.
[7] Prasher, R.S.; Shipley, J.; Prstic, S.; Koning, P.; Wang, J.L. Thermal resistance of particle laden polymeric thermal interface materials. J. Heat. Transf. 2003, 125, 1170–1177.
[8] Y. Sugawara. Recent progress in SiC power device developments and application studies. Proceedings. 2003.10-18.
[9] Mayorga, J.V.; Gutshall, C.P.; Phan, K.M.; Mantooth, H.A. Reese, B.; Schupbach, M.; Lostetter A. High-Temperature Silicon-on-Insulator Gate Driver for SiC-FET Power Modules. IEEE Transactions on Power Electronics. 2012,27,4417-4424.
[10] Renteria, J.D.; Nika, D.L.; Balandin, A.A. Graphene Thermal Properties: Applications in Thermal Management and Energy Storage. Appl. Sci. 2014,525-547.
[11] Chang, T.C.; Fuh, Y.K.; Lee ,R.Z. Screen Printed Nanostructured Composites as Thermal Interface Materials for IGBT heat dissipation applications, J. Micro/Nanolith. MEMS MOEMS. 2016, 15, 2353-2357.
[12] Elgafy, A.; Lafdi, K.; Effect of carbon nanofiber additives on thermal behavior of phase change materials. Carbon. 2005, 43, 3067-3074.
[13] Wang, L.W.; Tamainot-Telto, Z.; Thorpe, R.; Critoph, R.E.; Metcalf, S.J.; Wanga, R.Z. Study of thermal conductivity, permeability, and adsorption performance of consolidated composite activated carbon adsorbent for refrigeration. Renewable Energy. 2011, 36, 2062-2066.
[14] Xu, Y.S.; Chung, D.D.L. Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments. Compos.Interface. 2000, 7, 243–256.
[15] Song, W.L.; Ping, W.; Cao, L.; Ankoma, A. Mohammed, J.M. Andrew, J.F. Ping YS‘Polymer/Boron Nitride Nanocomposite Materials for Superior Thermal Transport Performance. Angew. Chem Int Ed. 2012, 51, 6498–6501.
[16] Khan, A.; Savi, P.; Quaranta, S.; Rovere, M.; Giorcelli, M.; Tagliaferro, A.; Rosso, C.; Jia, C. Low-Cost Carbon Fillers to Improve Mechanical Properties and Conductivity of Epoxy Composites. Polymers 2017, 9(12), 642.
[17] Janowska, I.; Vigneron, F.; Bégin, D.; Ersen, O.; Bernhardt, P.; Romero, T.; Ledoux, M.J.; Pham-Huu, C. Mechanical thinning to make few-layer graphene from pencil lead. Carbon 2012, 50(8), 3106-3110.
[18] Prasher, R.; Thermal interface materials: historical perspective, status, and future directions. Proc. IEEE. 2006, 94, 1571–1586.
[19] Chen, H.Y.; Ginzburg, V.V.; Yang, J.; Yang, Y.F. Liu, W.; Huang, Y.; Du, L.B.; Chen, B. Thermal conductivity of polymer-based composites:Fundamentals and applications. Progress in Polymer Science. 2016, 59,41-85.
[20] De, S.; King, P.J.; Lyons, P.E. Khan, U.; Coleman, J.N. Size Effects and the Problem with Percolation in Nanostructured Transparent Conductors. ACS Nano. 2014, 4(12), 7064-72.
[21] Delogu, F.; Gorrasi, Giuliana.; Sorrentino, A. Fabrication of polymer nanocomposites via ball milling: Present status and future perspectives. Progress in Materials Science. 2017, 86, 75-126.
[22] Chang, T.C.; Fuh, Y.K.; Lin, Z.Y.; Liao, C.A.; Ball milled dispersed network of graphene platelets as thermal interface materials for high-efficiency heat dissipation of electronic devices. JM3 2018, 17(2), 02400.
[23] Gu, J.W.; Li, N.; Tian, L.D.; Lv, Z.Y.; Zhang, Q.Y. High thermal conductivity graphite nanoplatelet/UHMWPE nanocomposites. RSC Advances. 2015, 5, 36334-36339.
[24] Chang, T.C.; Fuh, Y.K.; Lin, Z.Y.; Liao, C.A. Highly stretchable thermal interface materials with uniformly dispersed network of exfoliated graphite nanoplatelets via ball milled processing route. Microsystem Technologies. 2018, 1-9.
[25] Tian, X.J.; Itkis, M.E.E.; Bekyarova, B.; Haddon, R.C. Anisotropic Thermal and Electrical Properties of Thin Thermal Interface Layers of Graphite Nanoplatelet-Based Composites. Sci. Rep. 2013, 3, 1710.
[26] Bhowmik, R.N. Ferromagnetism in lead graphite-pencils and magnetic composite with CoFe2O4 particles. Composites Part B. 2012, 43, 503-509.
指導教授 傅尹坤(Yiin-Kuen Fuh) 審核日期 2018-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明