博碩士論文 973403014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.145.34.51
姓名 陳文吉(Arch Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 Al-Si-Mg合金 熱處理、 熱穩定度及磨耗腐蝕特性之研究
(Study of Heat Treatment, Thermal Stability and Wear Corrosion Behavior Impact on Al-Si-Mg Alloy)
相關論文
★ 非破壞性探討安定化熱處理對Al-7Mg鍛造合金微結構、機械與腐蝕性質之影響★ 非破壞性探討安定化熱處理對Al-10Mg鍛造合金微結構、機械與腐蝕性質之影響
★ 冷加工與熱處理對AA7055鍛造型鋁合金微結構與機械性質的影響★ 冷抽量對AA7055(Al-Zn-Mg-Cu)-T6態合金腐蝕性質和微結構之影響
★ 熱力微照射製作絕緣層矽晶材料之研究★ 分流擠型和微量Sc對Al-5.6Mg-0.7Mn合金微結構及熱加工性之影響
★ 銀對於鎂鎳儲氫合金吸放氫及電化學性質之研究★ 氧化物催化劑對亞共晶Mg-Ni合金之儲放氫特性研究
★ 熱處理對7050鋁合金應力腐蝕與含鈧鋁薄膜特性之影響研究★ Ti-V-Cr與Mg-Co基BCC儲氫合金性質研究
★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究★ 銅、鎂含量與熱處理對Al-14.5Si-Cu-Mg合金拉伸、熱穩定與磨耗性質之影響
★ 恆溫蒸發熔煉鑄造製程合成鎂基介金屬化合物及其氫化特性之研究★ 無電鍍鎳多壁奈米碳管對Mg-23.5wt.%Ni共晶合金儲放氫特性之影響
★ 微量Sc對A356鑄造鋁合金機械性質之影響★ 熱處理對車用鋁合金材料熱穩定性與表面性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文在探討 Al-Si-Mg合金之 熱處理,穩定性與磨耗腐蝕特之研究。 熱處理,穩定性與磨耗腐蝕特之研究。 對於以 Sr改良之 A356合金,其共晶矽之細化與球可減少破裂起始 合金,其共晶矽之細化與球可減少破裂起始 點,而提升合金之抗磨耐耗性。但共晶矽細化與球則造成 點,而提升合金之抗磨耐耗性。但共晶矽細化與球則造成 點,而提升合金之抗磨耐耗性。但共晶矽細化與球則造成 點,而提升合金之抗磨耐耗性。但共晶矽細化與球則造成 點,而提升合金之抗磨耐耗性。但共晶矽細化與球則造成 點,而提升合金之抗磨耐耗性。但共晶矽細化與球則造成 點,而提升合金之抗磨耐耗性。但共晶矽細化與球則造成 Al-Si之介面 增加,而合金之腐蝕速率。 故共晶矽細化與 T6熱處理產生 硬度提升之效益 仍大於共晶矽細化產生之腐蝕速率增加。 仍大於共晶矽細化產生之腐蝕速率增加。 Al-12.5Si-1.0Mg-xCu合金常用於高溫 之移動部件 , 高銅 (4.53wt%)之合金 在凝固時析出較多之 在凝固時析出較多之 在凝固時析出較多之 在凝固時析出較多之 在凝固時析出較多之 在凝固時析出較多之 在凝固時析出較多之 在凝固時析出較多之 在凝固時析出較多之 θ(Al2Cu)與 λ(Al5Cu2Mg8Si6)相。這些殘留在鋁基地中的硬質 這些殘留在鋁基地中的硬質 粒子 ,在熱穩定處理時 在熱穩定處理時 ,會維 持相對穩定的硬度 ,而使其耐磨抗耗性較低銅 ,而使其耐磨抗耗性較低銅 (2.55wt%)為佳 。而 T6熱處理雖 可使高銅合金在室溫有較的硬度,但用環境下其反而因 可使高銅合金在室溫有較的硬度,但用環境下其反而因 可使高銅合金在室溫有較的硬度,但用環境下其反而因 可使高銅合金在室溫有較的硬度,但用環境下其反而因 可使高銅合金在室溫有較的硬度,但用環境下其反而因 粗大 不 整合相之析出而低於鑄造狀態金。在磨耗行為方面,此二恆溫熱處理 整合相之析出而低於鑄造狀態金。在磨耗行為方面,此二恆溫熱處理 整合相之析出而低於鑄造狀態金。在磨耗行為方面,此二恆溫熱處理 整合相之析出而低於鑄造狀態金。在磨耗行為方面,此二恆溫熱處理 整合相之析出而低於鑄造狀態金。在磨耗行為方面,此二恆溫熱處理 後, 高銅 、低與T6合金 在 10N正向負荷磨耗實驗具有相同的速率; 正向負荷磨耗實驗具有相同的速率; 故在 10N正向負荷下, Al-12.5Si-1.0Mg合金銅含量 合金銅含量 及 T6熱處理 與磨耗速率無 關。然而,在 40N正向負荷下, 磨耗速率與合金硬度成負相關 。T6合金 之磨耗 速率最高,低銅合金次之佳; 速率最高,低銅合金次之佳; 速率最高,低銅合金次之佳; 速率最高,低銅合金次之佳; 速率最高,低銅合金次之佳; 速率最高,低銅合金次之佳; 速率最高,低銅合金次之佳; 磨耗速率隨著銅含量的增加而下降。 磨耗速率隨著銅含量的增加而下降。 磨耗速率隨著銅含量的增加而下降。 故對 Al-12.5Si-1.0Mg-xCu合金 高溫 環境 使用材料之熱處理選擇,以鑄造狀態合 金為佳 ,而 高銅 鑄態 合金較 高銅 T6與低銅 鑄態 合金在 熱穩定處理後具有較佳 的硬度 與耐磨抗耗能力 。
A356與 A357合金淬火至室溫,無自然時效之析出程序為 合金淬火至室溫,無自然時效之析出程序為 SSSSMg-Mg /Mg-Si/Si-Si clusterMg-Mg cluster dissolutionG.P. zoneβ′′ β′Siβ。淬火至室溫,經自然時效之析出程序為SSSSMg-Si/Si-Si clusterG.P. zoneβ′′β′Siβ。而淬火至90oC之析出程序則為 SSSS Mg-Mg/Mg-Si/Si-Si cluster+G.P. zone+β′′β′Siβ。90oC預時效可以促使 預時效可以促使 β′′的析出而降低自然時效的影響及後續人工時效降伏與拉伸強度的提升。
摘要(英) This study investigates the heat treatment, thermal stability and wear/corrosion behavior of Al-Si-Mg alloys. The A356 alloy which is modified by Sr, could refine and spheroidize the eutectic Si that could reduce the crack initiation location to enhance the wearability of Al-Si alloy. Eutectic Si refinement and spherodization will cause corrosion rate increase because of interface of Al and Si increase. However, the overall benefit of eutectic Si refinement is still increase the alloy wearability. Al-12.5Si-1.0Mg-xCu alloys are using on the movement parts at high temperature which need good wearability. The high Cu alloys(4.53wt%) has moreθ(Al2Cu) andλ(Al5Cu2Mg8Si6) phases precipitation when solidification. Those hard particles exisit in the Al matrix will increase stability of hardiness and wearability than low Cu alloy (2.55wt%) when thermal stability heat treatment. T6 heat treatment could enhace alloy hardness and stresngth in room temperature.However, the hardness will be reduced under 300oC isothermal heat treatment because of coarse incohererant phase precipitation. For wear behavior, the isothermal heat-treated of high Cu content, low Cu content and high Cu content T6 alloys showed the same wear rate with 10N normal load. The wear rate are independent on the copper content and T6 heat treatment under 10N load after isothermal stability heat treatment. After isothermal heat trestment and under 40N load, the high Cu content Al-12.5Si-1.0Mg cast alloy has the lowest wear rate then low Cu content cast alloy, the low Cu content cast alloy has lower wear rate than high Cu content T6 alloy. The Al-12.5Si-1.0Mg-xCu alloy is recommended to be used at high temperature environment, high Cu composition cast alloy has good thermal stability and warability than low Cu composition cast alloy. High Cu content T6 treatment alloy has worst wear rate after thermal heat treatment under 40N load.
關鍵字(中) ★ Al-12.5Si-1.0Mg
★ 磨耗行為
★ 銅含量
★ A356
★ 熱穩定性
★ A357
關鍵字(英)
論文目次 總目錄
中文摘要----------------------------------------------------------------------------------------V
英文摘要---------------------------------------------------------------------------------------VII
總目錄-------------------------------------------------------------------------------------------IX
圖目錄------------------------------------------------------------------------------------------XII
表目錄-----------------------------------------------------------------------------------------XV
一.前言……………………………………………………………………………..1
1.1 鑄鋁合金簡介…………………………………………………..…………1
1.2 Al-Si合金簡介……………………………………………………………2
1.3研究背景、目的與文獻回顧……………………………………………….4
二、 理論基礎………………………………………………………………..………10
2.1 鋁矽鎂(AlSiMg)鋁合金介紹……………………………...……………………11
2.1.1鋁矽鎂鋁合金特性……………………………………………………….11
2.1.2. 鋁矽鎂合金之介金屬化合物………………………………...…………14
2.1.3 鋁矽鎂合金熱處理………………………………………………………15
2.2 鋁矽鎂合金的腐蝕……………………………...………………………………20
2.2.1 鋁矽鎂合金的腐蝕特性…………………………………...…………….20
2.2.2電化學之Tafel 極化法腐蝕量測………………………………………...24
2.3 磨耗…………………………………………………………………………….24
三、 實驗步驟………………………………………………………………………30
3.1 合金製備…………………………………………...………………………30
3.1.1 Al–12.5Si–2.55/4.53Cu–1.0Mg合金之製作………………………..30
3.1.2不同含量Sr改良劑之合金製作 …………………………………..31
3.2 合金熱處理……………………...…………………………………………32
3.3 微結構觀察……………………...…………………………………………32
3.3.1 光學顯微鏡 ………………………………………………………32
3.3.2 掃描式電子顯微鏡(Scanning Electron Microscopy)…………….32
3.3.3電子微探儀(Electron Probe X-ray Microanalysis)…………………33
3.3.4影像分析(Image Analysis)…………………………………………33
3.3.5導電度量測 (Electrical Conductivity, %IACS)…………………….33
3.3.6 熱差掃瞄分析(Differential Scanning Calorimetry)………………..34
3.4硬度試驗………………………….……………………………………..34
3.5腐蝕性質試驗……….……………………………...…………………….34
3.6 磨耗試驗(Wear test)……………………………………………………….35
3.7 拉伸試驗 (Tensile test)……………………………………………………36
3.8 磨耗腐蝕試驗(Wear-corrosion Test)……………………………………..36
四、 結果與討論……………………………………………………………………38
4.1 A356-Al-7Si-0.35Mg合金…………………………………………………38
4.1.1微結構分析…………………………………………………………….38
4.1.2 硬度與磨耗分析………………………………………………………40
4.1.3 腐蝕分析………………………………………………………………42
4.2 Al-12.5Si-xCu 合金……………………………………………………….46
4.2.1 微結構分析……………………………………………………………46
4.2.2 微差掃描熱 (DSC)與導電度分析………………………………...…49
4.2.3 硬度分析………………………………………………………………49
4.2.4磨耗測試……………………………………………………………….55
4.3 Al-7Si-Mg合金預時效熱處理及其機械性質研究………….…………….58
4.3.1 微差掃描熱分析(DSC)…………………………………………….....58
4.3.2拉伸試驗與分析……………………………………………………….65
五、結論 …………………………………………………………………………....67
六、參考文獻………………………………………………………………………..69
參考文獻 六、參考文獻

1. J. E. Hatch, “Aluminum: Properties and Physical Metallurgy”, ASM International, Metals Park, Ohio, 1984, pp. 351-377.
2. J. E. Hatch, “Aluminum: Properties and Physical Metallurgy”, ASM International, Metals Park, Ohio, 1984, pp. 320-350.
3. J. E. Gruzleski, B. M. Closset, “The Treatment of Liquid Aluminum-Silicon Alloys”, AFS Inc., Illinois, 1990, p. 13.
4. J. R. Davis & Associates, ASM Specialty Handbook, “Aluminum and Aluminum Alloys”, ASM International Materials Park, Ohio, 1994, pp.199-228.
5. H. Ye, “An Overview of the Development of Al-Si-Alloy Based Material for Engine Applications”, J. Material and Engineering Performance, 2003, 12(3), p 288-297.
6. M. Zeren, Effect of Copper and Silicon Content on Mechanical Properties in Al-Cu-Si-Mg Alloys, J. Material Processing Technology, 2005, 169, p 292–298.
7. J. Man, L. Jin, and S.G. Jie, The Effects of Cu Addition on the Microstructure and Thermal Stability of an Al-Mg-Si Alloy, J. Alloys Compounds., 2006, 304, p 521–526.
8. N. Tenekedjiev, H. Mulazimoglu, B. Closset, and J. Gruzleski, Microstructures and Thermal Analysis of Strontium-Treated Aluminum-Silicon Alloys, AFS, Des Plaines, IL, 1995.
9. G. Wang, X. Bain, W. Wang, J. Zhang, “Influence of Cu and Minor Elements on Solution Treatment of Al-Si-Cu-Mg Cast Alloys”, Material Letter, Vol. 57, 2003, pp. 4083-4087.
10. G. Wang, X. Bian, J. Qiao, J. Zhang, “Effect of Be on Aging Behavior of an Al-Si-Cu-Mg Cast Alloy”, J. Material and Engineering Performance, Vol. 13, 2004, pp. 99-102.
11. L. Lasa, J. M. R. Ibabe, “Wear Behaviour of Eutectic and Hypereutectic Al-Si-Cu-Mg Casting Alloys Tested Against a Composite Brake Pad”, Material Science and Engineering, Vol. 363A, 2003, pp. 193-202.
12. F. H. Aamuel, P. Quellet, ”Effect of Mg and Sr Additions on the Formation of Intermetallics in Al-6 Wt Pct Si-3.5 Wt Pct Cu-(0.45) to (0.8)Wt Pct Fe 319-Tpe Alloy”, Metallurgical and Materials Transactions A, Vol. 29, 1998, pp.2871-2884.
13. P. Huter, P. Renhart, S. Oberfrank, M. Schwab, B. Stauder, ” ˊ”, International Journal of Fatigue, Vol. 82, 2016, pp. 588-601.
14. Z. Yuan, Z. Guo, S.M. Xiong, “Effect of as-cast microstructure heterogeneity on aging behavior of a high-pressure die-cast A380alloy”, Materials Characterization, V135, 2018, pp. 278-286.
15. M. Vlach, J. ?i?ek, B. Smola, O. Melikhova, P. Hru?ka, “Heat treatment and age hardening of Al–Si–Mg–Mn commercial alloy with addition of Sc and Zr”, Materials Characterization, V129, 2017, pp. 1-8.
16. D. Zavodska, E. Tillova, M. Guagliano, L. Kucharikova, M. Chalupova, “Fatigue Resistance of Self-hardening Aluminium Cast Alloy”, Materials Today: Proceedings, Vol. 4, 2017, pp. 6001-6006.
17. P. Nelaturu, S. Jana, R. S. Mishra, G. Grant, B. E. Carlson, “Influence of friction stir processing on the room temperature fatigue cracking mechanisms of A356 aluminum alloy”, Materials Science and Engineering: A, Vol. 716, 2018, pp. 165-178.
18. W. Liu, W. Xiao, C. Xu, M. Liu, C. Ma, “Synergistic effects of Gd and Zr on grain refinement and eutectic Si modification of Al-Si cast alloy”, Materials Science and Engineering: A, Vol. 693, 2017, pp. 93-100.
19. 邱弘興,胡瑞峰,.潘永寧, “製程參數對A356 鋁合金孔洞影響之探討”,中國機械工程會第八屆學術研討會, 台北市、民國80年11月24日, pp. 983-992.
20. Z. Ma, A. M. Samuel, F. H. Samuel, H. W. Doty, S. Valtierra, “A study of tensile properties in Al–Si–Cu and Al–Si–Mg alloys: Effect of β-iron intermetallics andporosity”, Materials Science and Engineering: A, Vol. 490, 2008, pp. 36-51.
21. H. PUGA, J. BARBOSA, N.Q. TUAN, F. SILVA, “Effect of ultrasonic degassing on performance of Al-based components”, Transactions of Nonferrous Metals Society of China, Vol. 24, 2014, pp. 3459-3464.
22. D. Shin, S. Roy, T. R. Watkins, A. Shyam, “Lattice mismatch modeling of aluminum alloys”, Computational Materials Science, Vol. 138, 2017, pp. 149-159.
23. M. D. Giovanni, J. M. Warnett, M. A. Williams, P. Srirangam, “3D imaging and quantification of porosity and intermetallic particles in strontium modified Al-Si alloys”, Journal of Alloys and Compounds, Vol. 727, 2017, pp. 353-361.
24. A. V. Ilyukhina, O. V. Kravchenko, B. M. Bulychev, “ Studies on microstructure of activated aluminum and its hydrogen generation properties inaluminum/water reaction”, Journal of Alloys and Compounds, Vol. 690, 2017, pp. 321-329.
25. Aladar Pacz, United States Patent 1,387,900, Aug. 16, 1921.
26. C. Lee, K. N Shin, Y. Kim, “Dependence of tensile ductility on damage evolution of eutectic Si-particles and pre-existing micro-voids in Al-Si casting alloy”, Engineering Fracture Mechanics, Vol. 175, 2017, pp. 339-356.
27. A. Fortini, M. Merlin, E. Fabbri, S. Pirletti, G. L. Garagnani, “On the influence of Mn and Mg additions on tensile properties, microstructure and quality index of the A356 aluminum foundry alloy”, Procedia Structural Integrity, Vol. 2, 2016, pp. 2238-2245.
28. Q. Li, B. Li, J. Li, Y. Zhu, T. Xia, “Effect of yttrium addition on the microstructures and mechanical properties of hypereutectic Al-20Si alloy”, Materials Science and Engineering: A, Vol. 722, 2018, pp. 47-57.
29. M. G. Mueller, M. Fornabaio, G. ?agar, A. Mortensen, “Microscopic strength of silicon particles in an aluminium–silicon alloy”, Acta Materialia, Vol. 105, 2016, pp. 165-175.
30. E. Vandersluis, D. Sediako, C. Ravindran, A. Elsayed, G. Byczynski, “Analysis of eutectic silicon modification during solidification of Al-6Si using in-situ neutron diffraction”, Journal of Alloys and Compounds, Vol. 736, 2018, pp. 172-180.
31. Z. Chen, X. Hao, J. Zhao, C. Ma, “Kinetic nucleation of primary α(Al) dendrites in Al–7%Si–Mg cast alloys with Ce and Sr additions”, Transactions of Nonferrous Metals Society of China, Vol. 23, 2013, pp. 3561-3567.
32. X. L. Cui, Y. Y. Wu, T. Gao, X. F. Liu, “Preparation of a novel Al–3B–5Sr master alloy and its modification and refinement performance on A356 alloy”, Journal of Alloys and Compounds, Vol. 615, 2014, pp. 906-911.
33. N. Haghdadi, A. Z. Hanzaki, H. R. Abedi, O. Sabokpa, “The effect of thermomechanical parameters on the eutectic silicon characteristics in a non-modified cast A356 aluminum alloy”, Materials Science and Engineering: A, Vol. 549 , 2012, pp. 93-99.
34. K. N. Prabhu, B. N. Ravishankar, “Effect of modification melt treatment on casting/chill interfacial heat transfer and electrical conductivity of Al–13% Si alloy”, Materials Science and Engineering: A, Vol. 360, 2003, pp. 293-298.
35. A. M. Samuel, H. W. Doty, S. Valtierra, F. H. Samuel, “Effect of grain refining and Sr-modification interactions on the impact toughness of Al–Si–Mg castalloys”, Materials & Design, Vol. 56, 2014, pp. 264-273.
36. C. Y. Yang, S. L. Lee, C. K. Lee, J. C. Lin, “Effects of Sr and Sb modifiers on the sliding wear behavior of A357 alloy under varying pressure and speed conditions”, Wear, Vol. 261, 2006, pp. 1348-1358.
37. X. Chen, Y. Zhong, T. Zheng, Z. Shen, Q. He, “Refinement of primary Si in the bulk solidified Al-20 wt.%Si alloy assisting by high static magnetic field and phosphorus addition”, Journal of Alloys and Compounds, Vol. 714, 2017, pp. 39-46.
38. M. G. Mueller, G. ?agar, A. Mortensen, “In-situ strength of individual silicon particles within an aluminium casting alloy”, Acta Materialia, Vol. 143, 2018, pp. 67-76.
39. T. Harish, V. Rajeev, “Effect of Variation in Stroke Length on Dry Reciprocating Wear of Aluminium Alloys“, Materials Today: Proceedings, Vol. 5, 2018, pp. 1341-1347.
40. C. M. Rao, K. M. Rao, “Abrasive wear Behaviour of TiB2 Fabricated Aluminum 6061”, Materials Today: Proceedings, Vol.5, 2018, pp. 268-275.
41. A. G. Spangenberger, D. A. Lados, M. Coleman, S. Birosca, M. C. Hardy, “Microstructural mechanisms and advanced characterization of long and small fatigue crack growthin cast A356-T61 aluminum alloys”, International Journal of Fatigue, Vol. 97, 2017, pp. 202-213.
42. A. Buchwalder, E. Hegelmann, P. Hengst, R. Zenker, “Studies on the influence of electron beam deflection techniques on the quality and properties ofsurface alloyed cast Al material with Cu based additive”, Surface and Coatings Technology, Vol. 329 , 2017, pp. 262-271.
43. M. S. Prabhudev, V. Auradi, K. Venkateswarlu, N. H. Siddalingswamy, S. A. Kori, “Influence of Cu Addition on Dry Sliding Wear Behaviour of A356 Alloy”, Procedia Engineering, Vol. 97, 2014, pp. 1361-1367.
44. N. Raghukiran, R. Kumar, “Effect of scandium addition on the microstructure, mechanical and wear properties of the spray formed hypereutectic aluminum–silicon alloys”, Materials Science and Engineering: A, Vol. 641,2015, pp. 138-147.
45. C. Lin, S. Wu, S. Lu, J. Zeng, P. An, “Dry sliding wear behavior of rheocast hypereutectic Al–Si alloys with different Fe contents”, Transactions of Nonferrous Metals Society of China, Vol. 26, 2016, pp. 665-675.
46. B. Sunil, V. R. Rajeev, S. Jose, “A Statistical Study on the Dry Wear and Friction Characteristics of Al-12.6Si-3Cu- (2-2.6wt.%) Ni Piston Alloys”, Materials Today: Proceedings, Vol. 5, 2018, pp. 1131-1137.
47. V. C. Srivastava, S. N. Ojha, “Microstructure and wear characteristics of spray formed and hot extruded Al-Si alloys”, Material Science and Technology, Vol. 20, 2004, pp.1632-1638.
48. F. Wang, Y. Ma, Z. Zhang, X. Cui, Y. Jin, “A comparison of the sliding wear behavior of a hypereutectic Al-Si alloy prepared by spray-deposition and conventional casting methods”, Wear, Vol. 256, 2004, pp. 342-345.
49. E. Ghassemali, M. Riestra, T. Bogdanoff, B. S. Kumar, S. Seifeddine, “Hall-Petch equation in a hypoeutectic Al-Si cast alloy: grain size vs. secondary dendrite arm spacing”, Procedia Engineering, Vol. 207, 2017, pp. 19-24.
50. P. Tang, W. Li, Y. Zhao, K. Wang, F. Zhan, “Influence of strontium and lanthanum simultaneous addition on microstructure and mechanical properties of the secondary Al-Si-Cu-Fe alloy”, Journal of Rare Earths, Vol. 35, 2017, pp. 485-493.
51. C. Qiu, S. Miao, X. Li, X. Xia, W. Zhao, “Synergistic effect of Sr and La on the microstructure and mechanical properties of A356.2 alloy”, Materials & Design, Vol. 114, 2017, pp. 563-571.
52. X. Liu, B. Beausir, Y. Zhang, W. Gan, L. Zuo, “Heat-treatment induced defect formation in α-Al matrix in Sr-modified eutectic Al–Si alloy”, Journal of Alloys and Compounds, Vol. 730, 2018, pp. 208-218.
53. J. E. Gruzleski and B. M. Closset , ”The Treatment of Liquid Aluminum-Silicon Alloys”, AFS, 1990, pp.1-4.
54. 材料手冊 II、非鐵金屬材料,中國材料科學學會, pp.20 (1983).
55. J. E. Hatch, ”Aluminum:Properties and Physical Metallurgy”, London, Butterwordths and Co., Ltd., 1976, pp.346-347.
56. S. Murali, K. S. Raman, K. S. S. Murthy, “Morphological studies on β-FeSiAl5 phase in Al-7-Si-0.3Mg alloy with trace additions of Be, Mn, Cr, and Co”, Materials Characterization, Vol. 33, 1994, pp. 99-112.
57. L. Backerud, G. Chai, J. Tamminen, “Solidification Characteristics of Aluminum Alloys”, Vol. 2 Foundry Alloys, AFS, Skanaluminium, Sweden, 1990, pp.143-150.
58. R. W. Bruner, “Metallurgy of Die Casting Alloys”, SDCE. Detroit. MI, pp.25 (1976).
59. S. L. Pramod, A. K. P. Rao, B. S. Murty, S. R. Bakshi, “Effect of Sc addition and T6 aging treatment on the microstructure modification and mechanical properties of A356 alloy”, Materials Science and Engineering: A, Vol. 674, 2016, pp. 438-450.
60. 王建義, “鑄造用鋁合金”, 鑄工季刊第 81 期,pp.38-44 (1994).
61. W. Yu, H. Zhao, L. Wang, Z. Guo, S. Xiong, “The influence of T6 treatment on fracture behavior of hypereutectic Al-Si HPDC casting alloy” Journal of Alloys and Compounds, Vol. 731, 2018, pp. 444-451.
62. J. E. Gruzleski, B. M. Closset, ”The Treatment of Liquid Aluminum-Silicon Alloys”, AFS, 1990, pp. 110-117.
63. J. E. Gruzleski, B. M. Closset, ”The Treatment of Liquid Aluminum-Silicon Alloys”, AFS, 1990, pp. 25-50.
64. G. Timelli, D. Caliari, J. Rakhmonov, “Influence of Process Parameters and Sr Addition on the Microstructure and Casting Defects of LPDC A356 Alloy for Engine Blocks”, Journal of Materials Science & Technology, Vol. 32, 2016, pp. 515-523.
65. A. Lombardi, W. Mu, C. Ravindran, N. Dogan, M. Barati, ” Influence of Al2Cu morphology on the incipient melting characteristics in B206 Al alloy”, Journal of Alloys and Compounds, Vol. 747, 2018, pp. 131-139.
66. M. D. Giovanni, J. M. Warnett, M. A. Williams, P. Srirangam, ” 3D imaging and quantification of porosity and intermetallic particles in strontium modified Al-Si alloys”, Journal of Alloys and Compounds, Vol. 727, 2017, pp. 353-361.
67. W. Kasprzak, H. Kurita, G. Birsan, B. S. Amirkhiz, ” Hardness control of Al–Si HPDC casting alloy via microstructure refinement and tempering parameters”, Materials & Design, Vol. 103, 2016, pp. 365-376.
68. Z. Li, N. Limodin, A. Tandjaoui, P. Quaegebeur, D. Balloy, “Effect of trace Sr and Be on mechanical properties in Al-11%Si”, Materials Science and Engineering: A, Vol. 689, 2017, pp. 286-297.
69. Z. Ma, A. M. Samuel, H. W. Doty, S. Valtierra, F. H. Samuel, ” Effect of Fe content on the fracture behaviour of Al–Si–Cu cast alloys”, Materials & Design, Vol. 57, 2014, pp. 366-373.
70. J. A. Taylor, ” Iron-Containing Intermetallic Phases in Al-Si Based Casting Alloys”, Procedia Materials Science, Vol. 1, 2012, pp. 19-33.
71. M. Rejaeian, M. Karamouz, M. Emamy, M. Hajizamani, ”Effects of solution temperature on mechanical properties of 319.0 aluminum casting alloys contaioning trace beryllium ”, Transactions of Nonferrous Metals Society of China, Vol. 25, 2015, pp. 3539-3545.
72. F. H. Samuel, A. M. Samuel, “Decomposition of Fe-Intermetallics in Sr-Modified Cast 6xxx Type Aluminum Alloys for Automotive Skin”, Metallurgical and Materials Transactions A, Vol. 32A, 2001, pp. 2061-2075.
73. P. Shower, S. Roy, C. S. Hawkins, A. Shyam, “The effects of microstructural stability on the compressive response of two cast aluminum alloys up to 300°C”, Vol. 700, 2017, pp. 519-529.
74. 劉國雄、葉均蔚,“高強力鋁合金之熱處理-析出硬化”,金屬熱處理, 14期, 1985, pp. 1-28.
75. D. Apelian, S. Shivkumar and G. Sigworth, “Fundamental aspects of heat treatment of cast Al-Si-Mg alloys”, AFS Trans., Vol. 137, 1989, pp. 727-743.
76. J. E. Hatch, ”Aluminum: Properties and Physical Metallurgy”, London, Butterwordths and Co., Ltd. (1976), pp. 143-148.
77. 劉偉隆、林淳杰、曾春風、陳文照, “物理冶金”,全華科技圖書股份有 限公司, pp.16-10~11 (1996)
78. R. Chen, Q. Xu, H. Guo, Z. Xia, B. Liu, ” Modeling the precipitation kinetics and tensile properties in Al-7Si-Mg cast aluminum alloys”, Materials Science and Engineering: A, Vol. 685, 2017, pp. 403-416.
79. John Banhart, Cynthia Sin, Ting Chang, and Zequi Liang, “Natural Ageing in Al-Mg-Si Alloys-A Process of Unexpected Complexity”, Advanced Engineering Materials, vol. 12, pp. 559-571, 2010.
80. L. Zhen, and S.B. Kang, “DSC analysis of precipitation behavior of two Al-Mg-Si alloys naturally aged for different times”, Materials Letters, vol. 37, pp. 349-353, 1998.
81. L. Zhen, S.B. Kang, and H.W. Kim, “Effect of natural ageing and preageing on subsequent precipitation process of an Al-Mg-Si alloy with high excess silicon”, Material Science and Technology, vol.13, pp. 905-910, 1997.
82. L. Zhen, and W.D. Fei, “Precipitation behavior of Al-Mg-Si Alloys with high silicon content”, Chapman & Hall, vol.32, pp. 1895-1902, 1997.
83. A.K. Gupta and D.J. LLoyd, “Study of Precipitation Kinetics in a Super Purity Al-0.8 Pct Mg-0.9 Pct Si Alloy Using Differential Scanning Calorimetry”, Metallurgical and Material Transaction A, vol.30A, pp. 879-884, 1999.
84. M. G. Fontana, N. D. Greene, “Corrosion Engineering”, 3rd ed., McGraw-Hill, 1986, pp. 51-59.
85. D. A. Jones, “Principles and Prevention of Corrosion”, 2nd ed., Prentice Hall International, Inc., 1997, pp. 44-171.
86. R. Steigerweld, “Corrosion”, Metals Handbook 9th, American Society for Metals, Vol.13, 1987, p.206.
87. R. Steigerweld, “Corrosion”, Metals Handbook 9th, American Society for Metals, Vol.13, 1987, p.207.
88. 柯賢文編著,腐蝕及其防治,全華科技圖書公司, 1995, p.143.
89. ASTM G40-82, “Annual Book of ASTM Standards”, Vol. 03.02, 1984, p. 239.
90. A. Vedrtnam, A. Kumar, “Fabrication and wear characterization of silicon carbide and copper reinforced aluminium matrix composite”, Materials Discovery, Vol. 9, 2017, pp. 16-22.
91. Karl-Heinz Zum Gahr, “Microstructure and wear of materials”, Chapter 4 Classification of wear process, Elsevier Science Publisher, Amsterdam, The Netherlands, 1987, pp. 80-131.
92. Karl-Heinz Zum Gahr, “Microstructure and wear of materials”, Chapter 6 Sliding wear, Elsevier Science Publisher, Amsterdam, The Netherlands, 1987, pp. 351-495.
93. K. G. Budinski, “Surface Engineering for Wear Resistance”, Prentice Hall, 1988, pp.16-18.
94. Nam P. Suh, “The delamination theory of wear”, Wear, Vol.25 ,1973, pp. 111-124.
95. Nam P. Suh, “An overview of the delamination theory of wear”, Wear, Vol. 44 ,1977, pp. 1-16.
96. F. De Geuser, “3D atom probe study of solute atoms clustering during natural ageing and pre-ageing of an Al-Mg-Si alloy”, Philosophical Magazine Letters, Vol. 86, 2006, 227-234.
指導教授 李勝隆 審核日期 2018-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明