博碩士論文 105323049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:100 、訪客IP:3.145.161.199
姓名 薛峻岳(Jyun-Yue Syue)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 MOCVD行星式腔體之進氣系統創新設計及熱流分析
相關論文
★ 筆記型電腦改良型自然對流散熱設計★ 移動式顆粒床過濾器濾餅流場與過濾性能之研究
★ IP67防水平板電腦設計研究★ 汽車多媒體導航裝置散熱最佳化研究
★ 流動式顆粒床過濾器三維流場觀察及能性能測試★ 流動式顆粒床過濾器冷性能測試
★ 流動式顆粒床過濾器過濾機制研究★ 二維流動式顆粒床過濾器內部配置設計研究
★ 循環式顆粒床過濾器過濾性能研究★ 流動式顆粒床過濾器之流場型態設計與研究
★ 流動式顆粒床過濾器之流動校正單元設計與分析研究★ 流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究
★ 稻稈固態衍生燃料成型性分析之研究★ 流動式顆粒床過濾器之不對稱葉片設計與冷性能過濾機制研究
★ 流動式顆粒床過濾器之滾筒式粉塵分離系統與冷性能過濾及破碎效應研究★ 稻稈固態衍生燃料加入添加物成型性分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 有機金屬化學氣相沉積法(Metal-Organic Chemical Vapor Deposition, MOCVD)為工業上製作半導體元件最重要的技術之一。而各個開發者之目標皆為透過對於MOCVD進氣系統進行改良,使腔體內可以獲得穩定的熱流場與良好的薄膜成長條件。本研究使用COMSOL Multiphysics軟體進行運算與分析,研究內容主要可分為兩個部分:第一部分為對於行星式腔體內部熱流場與質傳現象進行探討,並於探討腔體進氣系統前選取適當的製程參數,接著透過更改噴射器內部間隔板擺放方式來優化進氣系統流道,藉此提升晶圓上之薄膜成長速率;第二部分則為改善行星式腔體因顆粒堆積於晶圓自旋機構所造成之停機清理問題,藉由於腔體上壁增加噴流進氣口,可對於氣體流動過程中所消耗的TMG進行補充,進而提升晶圓末端之薄膜成長速率。此外,本研究亦透過檔板設計來解決晶圓前端位置薄膜成長速率過高之問題,最終可使晶圓在不自旋情況下即可獲得良好的薄膜成長速率與均勻性。
摘要(英) Metal-Organic Chemical Vapor Deposition, MOCVD, is one of the most important technology to produce the Semiconductor device in the industry. The goals of all the developers are to get the stable thermal-flow field and great condition of depositing the thin film. The way to achieve the goals is to improve the original inlet system of MOCVD. In this study, the numerical software COMSOL was used to calculate and analyze the MOCVD system. In first part, the numerical method was applied to investigate the thermal-flow field and the phenomenon of the mass transfer inside the reactor. Besides, the numerical method was also applied to find the best range of the process parameter before this study start to investigate the inlet system. In the end, this study try to improve the growth rate by adjust the barrier inside the Injector. In second part, our goal is to overcome the issue of the accumulation inside the rotate component for the wafer. By adding the gas inlet on the top of the reactor, the flow can supply the TMG and improve the growth rate at the end of the wafer. In addition, this study also using the barrier to reduce the exorbitant growth rate at the front of the wafer. In the end, the new design can get the great growth rate and uniformity without the wafer rotate.
關鍵字(中) ★ 化學氣相沉積
★ 進氣設計
★ 數值模擬
關鍵字(英) ★ MOCVD reactor
★ simulation
★ inlet design
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 XII
符號說明 XIII
第一章 緒論 1
1.1前言 1
1.2 MOCVD簡介 3
1.2.1磊晶技術發展歷程 3
1.2.2磊晶技術簡介與比較 4
1.2.3 MOCVD磊晶機台簡介 7
1.3 MOCVD反應腔體與進氣系統種類 10
1.3.1垂直式反應腔體 10
1.3.2水平式反應腔體 12
1.3.3 結合水平與垂直進氣之反應腔體 13
1.4文獻回顧 17
1.5研究動機與內容 21
第二章 基礎理論 22
2.1腔體內部熱流場與質傳理論 22
2.1.1腔體內部熱傳理論 22
2.1.2熱流場穩定性相關理論 23
2.1.3腔體內部質傳理論 25
2.2薄膜沉積理論 27
2.2.1薄膜反應機制 27
2.2.2反應氣體傳輸機制 28
2.2.3薄膜成長速率相關理論 30
2.3薄膜成長速率與均勻性計算 31
第三章 數值模擬方法 34
3.1數值模擬軟體介紹 34
3.1.1 數值模擬軟體簡介 34
3.1.2有限元素法(Finite Element Method, FEM) 34
3.1.3求解方法 35
3.2幾何模型 37
3.3模擬基本假設與統御方程式 39
3.3.1基本假設 39
3.3.2統御方程式 39
3.4邊界條件 41
3.5混合氣體之物理性質 44
3.6數值模擬流程圖 46
3.7網格獨立分析 47
第四章 結果與討論 53
4.1行星式腔體內部熱流場模擬分析與進氣系統探討 54
4.1.1進氣配比對於行星式腔體之影響 55
4.1.2進氣流率對於行星式腔體之影響 62
4.1.3腔體壓力對於行星式腔體之影響 70
4.1.4噴射器內部間隔板擺放方式對於行星式腔體之影響 79
4.1.5小結 88
4.2腔體上壁噴流裝置探討 89
4.2.1噴流進氣口排列方式對於腔體之影響 90
4.2.2不同入口狹縫數量對於腔體之影響 99
4.2.3入口前端檔板對於腔體之影響 105
4.2.4進氣流率對於新型腔體之影響 114
4.2.5載盤轉速對於新型腔體之影響 124
4.2.6小結 128
第五章 結論 129
參考文獻 131
參考文獻 [1]S. Nakamura, M. Senoh, and T. Mukai, “High-power lnGaN/GaN double-heterostructure violet light emitting diodes”, Applied Physics Letters, Vol 62, pp. 2390-2392, 1993.
[2]C. Tseng, The Resurgence of LED Investment - China to Lead the Pack, 2015. http://www.semi.org/en/node/55556
[3]LEDinside, Veeco’s Patent Infringement Case against SGL to Impact Chinese MOCVD manufactures, 2017. https://www.ledinside.com/news/2017/5/veecos_patent_infringement_case_against_sgl_to_impact_chinese_mocvd_manufactures
[4]陸大成和段樹坤,金屬有機化合物氣相外延基礎及應用,第一版,科學出版社,民國九十八年
[5]H.M. Manasevit, “Single?crystal Gallium Arsenide on Insulating Substrates”, Applied Physics Letters, Vol 12, pp. 156-159, 1968.
[6]羅冠承,「MOCVD可視化腔體熱流場實驗驗證與化學質傳模擬之分析」,國立中央大學,碩士論文,民國106年。
[7]P. Madejczyk, W. Gawron, P. Martyniuk, A. Keb?owski, A. Piotrowski, J. Pawluczyk, W. Pusz, A. Kowalewski, J. Piotrowski and A. Rogalski, “MOCVD grown HgCdTe device structure for ambient temperature LWIR detectors”, Semiconductor Science and Technology, Vol 28, 2013.
[8]J.J. Huang, H.C. Kuo, and S.C. Shen, Nitride Semiconductor Light-Emitting Diodes Leds: Materials, Technologies, and Applications, Woodhead Publishing, Sawston, 2013
[9]J. Su, E.A. Armour, B. Krishnan, S.M. Lee and G. Papasouliotis, “Stress engineering with AlN/GaN superlattices for epitaxial GaN on 200 mm silicon substrates using a single wafer rotating disk MOCVD reactor”, Journal of Materials Research, Vol 30, pp. 2846-2858, 2014.
[10]B. Mitrovic, A. Parekh, J. Ramer, V. Merai, E.A. Armour, L. Kadinski, and A. Gurary, “Reactor design optimization based on 3D modeling of nitrides deposition in MOCVD vertical rotating disc reactors”, Vol 289, pp. 708-714, 2006.
[11]M. Masi, M.D. Stanislao, and A. Veneroni, “Fluid-dynamics during vapor epitaxy and modeling”, Vol 47, pp. 239-270, 2003.
[12]S. Hu, Z. Gan, H. Yan, and S. Liu , “A buffered distributed spray MOCVD reactor design”, Electronic Packaging Technology and High Density Packaging, pp. 986-989, 2012.
[13]D.W. Shaw, “Kinetic aspects in the vapour phase epitaxy of III–V compounds”, Vol 31, pp. 130-141, 1975.
[14]H. Moffat, and K.F. Jensen, “Complex flow phenomena in MOCVD reactors: I. Horizontal reactors”, Vol 77, pp. 108-119, 1986.
[15]G. Evans, and R. Greif, “Effect of boundary conditions on the flow and heat transfer in a rotating disk chemical vapor deposition reactor”, Numerical Heat Transfer, Vol. 12, pp. 243-252, 1987.
[16]D.I. Fotiadis, and S. Kieda, “Transport phenomena in vertical reactors for metalorganic vapor phase epitaxy:I. Effects of heat transfer characteristics, reactor geometry, and operating conditions”, Journal of Crystal Growth, Vol. 102, pp. 441-470, 1990.
[17]D.I. Fotiadis, M. Boekholt, K.F. Jensen, and W. Richter, “Flow and heat transfer in CVD reactors: Comparison of Raman temperature measurements and finite element model predictions”, Journal of Crystal Growth, Vol. 100, pp. 577-599, 1990.
[18]G.W. Young, S.I. Hariharan, and R. Carnahan, “Flow effects in a vertical CVD reactor”, SIAM J. Appl. Math., Vol. 52, pp. 1509-1532, 1992.
[19]K.J. Bachmann, H.T. Bank, C. Hopfner, G.M. Kepler, S. Lesure, S.D. Mccall, and
J.S. Scroggs, “Optimal design of a high pressure organometallic chemical vapor deposition reactor”, Mathematical and Computer Modelling, Vol 29, pp. 65-80, 1999.
[20]R. Beccard, D. Schmitz, E.G. Woelk, G. Strauch, Y. Makarov, M. Heuken, M. Deschler, and H. Juergensen, “High temperature CVD systems to grow GaN or SiC based structures”, Materials Science and Engineering:B, Vol. 61-62, pp. 314-319, 1999.
[21]M. Dauelsberg, L. Kadinski, Y.N. Makarov, T. Bergunde, G. Strauch, and M. Weyers, “Modeling and experimental verification of transport and deposition behavior during MOVPE of Ga1-xInxP in the Planetary Reactor”, Vol. 208, pp. 85-92, 2000.
[22]W.V. Lundin, E.E. Zavarin, D.S. Sizov, M.A. Sinitsin, A.F. Tsatsulnikov, A.V. Kondratyev, E.V. Yakovlev, and R.A. Talalaev, “Effects of reactor pressure and residence time on GaN MOVPE growth ef?ciency”, Journal of Crystal Growth, Vol. 287, pp. 605-609, 2006.
[23]M. Dauelsberg, C. Martin, H. Protzmann, A.R. Boyd, E.J. Thrush, J. Kappeler, M. Heuken, R.A. Talalaev, E.V. Yakovlev, and A.V. Kondratyev, “Modeling and process design of III-nitride MOVPE at near-atmospheric pressure in close coupled showerhead and planetary reactors”, Journal of Crystal Growth, Vol. 298, pp. 418-424, 2007.
[24]G.M. Kepler, C. Hopfner, J.S. Scroggs, and K.J. Bachmann, “Simulation of a vertical reactor for high pressure organometallic chemical vapor deposition”, Materials Science and Engineering, Vol. B57, pp. 9-17, 1998.
[25]R. Zuo, H. Zhang, and X.L. Liu, “Transport phenomena in radial ?ow MOCVD reactor with three concentric vertical inlets”, Journal of Crystal Growth, Vol 293, pp. 498-508, 2006.
[26]D. Brien, M. Dauelsberg, K. Christiansen, J. Hofeldt, M. Deufel, and M. Heuken, “Modelling and simulation of MOVPE of GaAs-based compound semiconductors in production scale Planetary Reactors”, Journal of Crystal Growth, Vol. 303, p. 330-333, 2007
[27]C. Martin, M. Dauelsberg, H. Protzmann, A.R. Boyd, E.J. Thrush, M. Heuken, R.A. Talalaev, E.V. Yakovlev, and A.V. Kondratyev, “Modelling of group-III nitride MOVPE in the closed coupled showerhead reactor and Planetary Reactor”, Journal of Crystal Growth, Vol 303, pp. 318-322, 2007.
[28]C.S Kim, J. Hong, J. Shim, Y.S Won, and Y. Kwon, “Multiphysics modeling and design of ultralarge multiwafer MOVPE reactor for group III-Nitride light emitting diodes”, EuroSimE, 11th, 2010.
[29]C.Y. Shin, B.J. Baek, C.R. Lee, B. Pak, J.M. Yoon, and K.S. Park, “Numerical analysis for the growth of GaN layer in MOCVD reactor”, Journal of Crystal Growth, Vol. 247, pp. 301-312, 2003.
[30]L. Yang, Z. Chen, J. Zhang, and A.G. Li, “Transport Phenomena in a Novel Large MOCVD Reactor for Epitaxial Growth Thin Films”, IEEE Transactions on Semiconductor Manufacturing, Vol. 25, NO 1, 2012.
[31]S. Hu, S. Liu, Z. Zhang, H. Yan, Z. Gan, and H. Fang, “A novel MOCVD reactor for growth of high-quality GaN-related LED layers”, Journal of Crystal Growth, Vol 415, pp. 72-77, 2015
[32]王文濤,「金屬有機物化學氣象沉積反應腔建模與仿真」,中國華中科技大學,碩士論文,2008年。
[33]R. Karwa, Heat and Mass Transfer, Springer Publishing, Berlin, 2016
[34]莊子慶,「MOCVD腔體熱流場與新式進氣檔板之設計模擬分析研究」,國立中央大學,碩士論文,民國一O一年。
[35]林宜正,「化學氣相沉積之噴頭性能模擬分析」,國立中山大學,碩士論文,民國九十二年。
[36]林雋幃,「創新進氣擴散系統設計開發-檔板與垂直噴流設計於水平式腔體」,國立中央大學,碩士論文,民國一O二年。
[37]房子陽,「MOCVD創新進氣系統設計模擬分析」,國立中央大學,碩士論文,民國一O三年。
[38]R. Courant, “Variational methods for the solution of problems of equilibrium and vibrations”, American Mathematical Society, Vol 49, pp. 1-23, 1943
[39]黃文璋,微分之應用問題,2002年, http://www.stat.nuk.edu.tw/cbme/math/calculus/cal2/c4_5/bud.htm
[40]J. Tu, G.H. Yeoh, and C. Liu, Computational Fluid Dynamics: A Practical Approach, Elsevier, New York, 2012.
[41]J. Moehlis, Tutorial 5: Numerical Solution of the Diffusion Equation, 2001. https://me.ucsb.edu/~moehlis/APC591/tutorials/tutorial5/node3.html
[42]M. Eickelkamp, “MOCVD layer growth method with subsequent multi-stage cleaning step”, US Patent No. 9,670,580 B2, 2017.
[43]W. Yang, and J. Joo, “Numerical Modeling for GaN Deposition by MOCVD: Effects of the Gas Inlet”, Applied Science and Convergence Technology, Vol 23, pp. 139-144, 2014.
[44]C.C. Liao, S.S. Hsiau, and T.C. Chuang, “Modeling and designing a new gas injection diffusion system for metalorganic chemical vapor deposition”, Heat and Mass Transfer, Vol 54, pp. 115-123, 2018
指導教授 蕭述三(Shu-San Hsiau) 審核日期 2018-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明