博碩士論文 104323099 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.133.119.247
姓名 官鈺庭(Yu-Ting Guan)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 不同鍛造製程對Al-8Zn-2.5Mg-1.5Cu-xZr (x = 0.02, 0.2 wt. %)合金機械性質的影響
相關論文
★ 7005與AZ61A拉伸、壓縮之機械性質研究★ 雷射去除矽晶圓表面分子機載污染參數的最佳化分析
★ 球墨鑄鐵的超音波檢測★ 模具溫度對TV前框高亮光澤產品研討
★ 高強度7075-T4鋁合金之溫間成形研究★ 鎂合金燃燒、鑽削加工與表面處理之研究
★ 純鈦陽極處理技術之研發★ 鋁鎂合金陽極處理技術之研發
★ 電化學拋光處理、陽極處理中硫酸流速與封孔處理對陽極皮膜品質之影響★ 電解液溫度與鋁金屬板表面粗糙度對陽極處理後外觀的影響
★ 製程參數對A356鋁合金品質的影響及可靠度的評估★ 噴砂與前處理對鋁合金陽極皮膜品質的影響
★ 鎂合金回收重溶之品質與疲勞性質分析★ 鋁合金熱合氧化膜與陽極氧化膜成長行為之研究
★ 潤滑劑與製程參數對Al-0.8Mg-0.5Si鋁合金擠壓鑄件的影響★ 摩擦攪拌製程對AA5052鋁合金之微觀組織及對陽極皮膜的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究探討不同鍛造製程對Al-8Zn-2.5Mg-1.5Cu-xZr (x = 0.02, 0.2 wt. %)合金機械性質的影響。實驗中利用高週波溶解爐,以AA7075為母合金,透過添加Al-10 % Zr錠材與99.9%純Zn錠的方式調整至目標成份,熔煉後澆鑄於Y型金屬模中。切除冒口後的試塊,將進行不同的均質化熱處理、鍛造條件(包括鍛造溫度與模具型態),隨後再進行固溶、焠火與T73過時效處理。處理完成之試棒,按照ASTM-E8規範,利用CNC數控機床加工成公稱直徑9 mm的拉伸試棒並進行機械性質量測。
拉伸測試後的試棒會進行以下實驗以檢測其性質,研磨、拋光,並透過光學顯微鏡(OM),觀察試棒縱剖面之金相與顯微結構。利用影像分析軟體ImageJ,計算所觀測到的試片基地二次相顆粒尺寸與大小,並著重探討二次相、介金屬化合物(Intermetallic compounds, IMCs)等顆粒對機械性質之影響。利用FIB技術製備試片以進行掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)觀察。利用高解析場發掃描電鏡(FE-SEM)的電子背向散射繞射分析儀(EBSD),分析材料縱剖面方向的晶界角度差異,並統計其高低角度晶界分布。
研究成果表明,大變形量引致的高差排密度,會降低材料的再結晶溫度,但由於受剪力細化、散佈均勻的析出顆粒會阻礙晶界遷移,因此EBSD的解析結果顯示,經熱處理後的試片,其晶粒尺寸下降並且有少部分屬於高角度晶界。經由三段式均質化、開模式冷鍛的試片得到最優良的機械性質;最大抗拉強度506.11 MPa、降伏強度439 MPa以及延伸率約 12.2 %。
摘要(英) This study aims to investigate the effects of different forge and heat treatment conditions on the mechanical properties of Cast/Forge Al-8Zn-2.5Mg-1.5Cu-xZr (x= 0.02, 0.2 wt. %) alloy. High quality of Al-5.7%Zn-2.4%Mg-1.5%Cu alloy billets were used as base metal and melted in an induction furnace. For producing desired alloy samples, pure zinc ingot, and Al-10%Zr master alloys were added into the molten metal, then poured into Y-block mold. After solidification, the top risers of Y-block castings were removed to get block casting, and underwent different homogenization treatments and forged conditions. Then, the experiment samples were carried out solution treatment, water-quenched and T73 over-ageing treatment. After the above steps, refer to the ASTM-E8 specification, the experiment samples were machined to tensile test bar through CNC lathe.
After tensile test, the sample were prepared for the following experiments. Grinded and polished to observed the microstructure through the optic microscope (OM). Then analyzed the photo by image processing software ImageJ and calculate the 2nd phase particle sizes and quantities. Discussion would be addressed on its effects to mechanical properties. Samples were also prepared for transmission electron microscope (TEM) and scanning electron microscope (SEM) observation. In this study, electron backscatter diffraction analyses (EBSD) were conducted to get the grain boundary misorientation angles of different sample.
Deformation on samples produced high amounts of dislocation. Cold working retained high degree of dislocation density leading to reduce the recrystallization temperature. As a result, the sample obtained ultra-fine grains with high-angle grain boundary in matrix during solution/aging treatment. After subjecting to proper homogenization and sub-zero temperature forging, the optimum properties could be reached to have ultimate tensile strength (UTS) of 506.11 MPa, yield strength (YS) of 439 MPa and an elongation of 12.2 %.
關鍵字(中) ★ Al-Zn-Mg-Cu-Zr合金
★ 鍛造製程
★ 晶界角度
★ 機械性質
關鍵字(英) ★ Al-Zn-Mg-Cu-Zr Alloy
★ forging process
★ grain boundary angle
★ mechanical property
論文目次 目錄
摘要……………………………………………………………………………………………i
Abstract ………………………………………………………………………………………ii
目錄……………………………………………………………………………………iii
圖目錄………………………………………………………………………………………v
表目錄………………………………………………………………………………………vii
第一章 前言…………………………………………………………………………………1
第二章 文獻回顧……………………………………………………………………………2
2-1 Al-Zn-Mg-(Cu)高強度鋁合金介紹………………………………………………2
2-1-1 Al-Zn-Mg-(Cu)合金主要析出物簡介與特性分析…………………………2
2-1-1-1 析出物結構與物理性質比較……………………………………………3
2-1-1-2 GPZs………………………………………………………………………4
2-1-1-3 MgZn2……………………………………………………………………4
2-1-1-4 Al2Mg3Zn3………………………………………………………………5
2-1-1-5 Al3Zr………………………………………………………………………5
2-1-1-6 Al2Cu與Al2CuMg………………………………………………………6
2-1-2 Al-Zn-Mg-(Cu)合金析出序列介紹…………………………………………7
2-2 Al-8Zn-2.5Mg-1.5Cu-xZr (x = 0.02, 0.2 wt. %)合金………………………………8
2-2-1 鎂、鋅元素的影響…………………………………………………………8
2-2-2 銅元素的影響…………………………………………………………………8
2-2-3 鋯元素的影響…………………………………………………………………9
2-2-4 析出物種類與尺寸對析出強化的影響…………………………………9
2-3 熱處理參數對Al-Zn-Mg-(Cu)合金的影響………………………………………10
2-3-1 不同均質化參數對Al-Zn-Mg-(Cu)合金微結構與析出行為之影響………10
第三章 實驗步驟…………………………………………………………………………12
3-1 實驗用合金成份…………………………………………………………………12
3-2 實驗用設備與儀器介紹…………………………………………………………12
3-3 澆鑄模具、試棒與鍛造模具尺寸圖………………………………………………15
3-4 實驗步驟…………………………………………………………………………18
3-5 實驗流程…………………………………………………………………………20
第四章 結果與討論………………………………………………………………………23
4-1 Al-8Zn-2.5Mg-1.5Cu-xZr (x = 0.02, 0.2 wt. %)合金之機械性質…………………23
4-1-1 金相與微結構之調查………………………………………………………25
4-1-2 鍛造條件對機械性質之影響………………………………………………29
4-1-3 均質化參數對機械性質之影響……………………………………………35
4-2 EDS、SEM與TEM觀察結果……………………………………………………38
4-3 Al-8Zn-2.5Mg-1.5Cu-xZr (x = 0.02, 0.2 wt. %)合金抗腐蝕能力調查……………43
第五章 結論………………………………………………………………………………45
參考文獻……………………………………………………………………………………47
參考文獻 [1]. K. T. Kashyap and T. Chandrashekar, “Effects and mechanisms of grain refinement in aluminium alloys”, Bulletin of Materials Science, Vol. 24, pp. 345-353, August 2001.
[2]. L. Arnberg, L. Backerud and H. Klang, “Intermetallic particles in AI- Ti-B-type master alloys for grain refinement of aluminium”, Journal of Materials Science and Technology, Vol. 9, pp. 7-13, January 1982.
[3]. A. B. Pattnaik, S. Das, B. B. Jha and N. Prasantha, “Effect of Al–5Ti–1B grain refiner on the microstructure, mechanical properties and acoustic emission characteristics of Al5052 aluminium alloy”, Journal of Materials Research and Technology, Vol. 4, pp. 171-179, June 2015.
[4]. F. Wang, D. Qiu, Z. L. Liu, J. A. Taylor, M. A. Easton and M. X. Zhang, “The grain refinement mechanism of cast aluminium by zirconium”, Acta Materialia, Vol. 61, pp. 5636-5645, September 2013.
[5]. A. A. Rao, B. S. Murty, and M. Chakraborty, “Role of zirconium and impurities in grain refinement of aluminium lNith AI-Ti-B”, Journal of Materials Science and Technology, Vol. 13, pp. 769-777, September 1997.
[6]. S.H. Seyed Ebrahimi, M. Emamy, N. Pourkia, and H.R. Lashgari, “The microstructure, hardness and tensile properties of a new super high strength aluminum alloy with Zr addition”, Materials and Design, Vol. 31, pp. 4450-4456, October 2010.
[7]. H.C. Fang, K.H. Chen, X. Chen, L.P. Huang, G.S. Peng and B.Y. Huang, “Effects of Zr, Cr and Pr addition on microstructures and properties of ultra-high strength Al-Zn-Mg-Cu alloys”, Materials Science and Engineering A, Vol. 528, pp. 7606-7615, September 2011.
[8]. Y.V. Milman, A.I. Sirko, D.V. Lotsko, O.N. Senkov and D.B Miracle, “Microstructure and mechanical properties of cast and wrought Al-Zn-Mg-Cu alloys modified with Zr and Sc”, Materials Science Forum, Vol. 396-402, pp. 1217-1222, July 2002.
[9]. H. Adachi, K. Osamura, K. Kikuchi and J. Kusui, “Effect of Zr addition on dynamic recrystallization during hot extrusion in Al alloys”, Materials Transactions, JIM, Vol. 46, pp. 211-214, January 2005.
[10]. A. C. Umamaheshwer Rao, V. Vasu, M. Govindaraju and K. V. Sai Srinadh, “Stress corrosion cracking behaviour of 7xxx aluminum alloys: A literature review”, Transactions of Nonferrous Metals Society of China, Vol. 26, pp. 1447-1471, June 2016.
[11]. M. O. Speidel, “Stress Corrosion Cracking of Aluminum Alloys”, Metallurgical Transactions A, Vol. 6, pp. 631-651, April 1975.
[12]. M. B. Kannan, P. B. Srinivasan and V. S. Raja, “Stress corrosion cracking (SCC) of aluminium alloys”, Woodhead Publishing Series in Metals and Surface Engineering, pp. 307-340, September 2011.
[13]. Z. Chen, Y. Mo and Z. Nie, “Effects of Zn content on the microstructure and properties of super-high strength Al-Zn-Mg-Cu alloys”, Metallurgical and Materials Transactions A, Vol. 44, pp. 3910-3920, December 2013.
[14]. L.F. Mondolfo, “Structure of the aluminum: magnesium: zinc alloys”, Metallurgical Reviews, Vol. 16, pp. 95-124, January 1971.
[15]. K. Asano and K. I. Hirano, “Precipitation process in an Al-Zn-Mg alloy”, Transactions of the Japan Institute of Metals, Vol. 9, pp. 24-34, 1968.
[16]. J.J. Thompson, E, S, Tankins and V. S. Agarwala, “A heat treatment for reducing corrosion and stress corrosion cracking susceptibilities in 7XXX aluminum alloys”, Materials Performance, Vol. 26, pp. 45-52, June 1987.
[17]. M. O. Speidel and M. V. Hyatt, Advances in corrosion science and technology, Vol. 2, Plenum Press, New York, 1972.
[18]. H. Yoshida, D. J. H. Cockayne and M. J. Whelan, “A study of Guinier-Preston zones in aluminium-copper alloys using the weak-beam technique of electron microscopy”, Philosophical Magazine A, Vol. 34, pp. 89-100, July 1976.
[19]. A.E. Mahmoud, M. G. Mahfouz and H. G. Gad- Elrab, “Influence of zirconium on the grain refinement of Al 6063 alloy”, Journal of Engineering Research and Applications, Vol. 7, pp. 188-194, July 2014.
[20]. K. E. Knipling, D. C. Dunand and D. N. Seidman. “Criteria for developing castable, creep-resistant aluminum-based alloys - A review”, Zeitschrift fur Metallkunde, Vol. 97, pp. 246-265, January 2006.
[21]. P. B. Desch and R. B. Schwarz, “Formation of Metastable L12, Phases in Al, Zr and Al-l 2.5%X-25%Zr (X = Li, Cr, Fe, Ni, Cu)”, Journal of the Less Common Metals, Vol. 168, pp. 69-80, February 1991.
[22]. M. Cabibbo, “Microstructure strengthening mechanisms in different equal channel angular pressed aluminum alloys”, Materials Science and Engineering A, Vol. 560, pp. 413-432, January 2013.
[23]. J. Zhang, Y. N. Huang, C. Mao and P. Peng, “Structural, elastic and electronic properties of y (Al2Cu) and S (Al2CuMg) strengthening precipitates in Al–Cu–Mg series alloys: First-principles calculations”, Solid State Communications, Vol. 152, pp. 2100-2104, December 2012.
[24]. A. Deschamps, Y. Bre’ chet, and F. Livet, “Influence of copper addition on precipitation kinetics and hardening in Al–Zn–Mg alloy” , Materials Science and Technology, Vol. 15, pp. 993-1000, September 1999.
[25]. X. Fan, D, Jiang, Q. Meng and L. Zhong, “The microstructural evolution of an Al–Zn–Mg–Cu alloy during homogenization”, Materials Letters, Vol 60, pp. 1475-1479, June 2006.
[26]. G. W. Lorimer and R. B. Nicholson, “Further results on the nucleation of precipitates in the Al-Zn-Mg system”, Acta Metallurgica, Vol. 14, pp. 1009-1013, August 1966.
[27]. P. N. T. Unwin and R. B. Nicholson, “The nucleation and initial stages of growth of grain boundary precipitates in Al-Zn-Mg and Al-Mg alloys”, Acta Metallurgica, Vol. 17, pp. 1397-1393, November 1969.
[28]. H. P. Degischer, W. Lacom, A. Zahra and C. Y. Zahra, “Decomposition processes in an Al--5% Zn--1% Mg Alloy. II.--Electromicroscopic investigation”, Zeitschrift fur Metallkunde, Vol. 71, pp. 231-238, 1980.
[29]. A. Deschamps, F. Livet and Y. Brechet, “Influence of predeformation on ageing in an Al–Zn–Mg alloy—I. Microstructure evolution and mechanical properties”, Acta Materialia, Vol. 47, pp. 281-292, December 1998.
[30]. A. Deschamps and Y. Brechet, “Influence of predeformation and ageing of an Al–Zn–Mg alloy—II. Modeling of precipitation kinetics and yield stress”, Acta Materialia, Vol. 47, pp. 293-305, December 1998.
[31]. 張哲維,「應用鑄/鍛生產高、中強度與高延性鋁合金」,國立中央大學, 碩士論文, 民國104年。
[32]. D. Altenpohl, Aluminium und Aluminiumlegierungen, Reine und angewandte Metallkunde in Einzeldarstellungen, Springer Press; 1 edition, Berlin, January 1965.
[33]. W. Gruhl, “The stress-corrosion behavior of high-strength Al-Zn-Mg alloys”, Aluminum alloys in the aircraft industries, Vol. 54, pp. 323-325, 1978.
[34]. D. A. Hardwick, A. W. Thompson and I. M. Bernstein, “The Effect of copper contents and microstructure on the hydrogen embrittlement of Al-6Zn-2Mg alloys”, Metallurgical Transactions A, Vol. 14, pp. 2517-2526, December 1983.
[35]. B. Sarkar, M. Marek, E. A. Starke, “The effect of copper content and heat treatment on the stress corrosion characteristics of Ai-6Zn-2Mg-XCu alloys”, Metallurgical Transactions A, Vol. 12, pp. 1939-1943, November 1981.
[36]. T. H. Sanders, E. A. Starke, “The relationship of microstructure to monotonic and cyclic straining of two age hardening aluminum alloys”, Metallurgical Transactions A, Vol. 7, pp. 1407-1418, September 1976.
[37]. A. Vasudevan and R. Doherty, Aluminum alloys – contemporary research and applications, Vol. 31, Academics Press, San Diego, December 1989.
[38]. F. Czerwinski, W. Kasprzak, D. G. Sediako, D. Emadi, S. K. Shaha, J. Friedman, D. Chen, “Development of high temperature aluminum alloys for automotive powertrain”, Advanced Materials and Processes, Vol. 174, pp. 16-20, March 2016.
[39]. F. H. Gao, N. K. Li, N. Tian, Q. Sun, X. D. Liu and G. Zhao, “Overheating temperature of 7B04 high strength aluminum alloy”, Transactions of Nonferrous Metals Society of China, Vol. 18, pp. 321-326, April 2008.
[40]. Y. L. Deng, Y. Y. Zhang, L. Wan, A. A. Zhu and X. M. Zhang, “Three-stage homogenization of Al-Zn-Mg-Cu alloys containing trace Zr”, Metallurgical and Materials Transactions A, Vol. 44, pp. 2470-2477, June 2013.
[41]. 魏千竣,「鑄/鍛鋁合金的微結構對機械性質的影響」,國立中央大學,碩士論文,民國105年。
[42]. R. Abbaschian, L. Abbaschian and R. E. Reed-Hill, Physical Metallurgy Principles-SI version, 4th edition, Cengage Learning Press, May 2009.
[43]. P. S. De and R. S. Mishra, “Microstructural evolution during fatigue on ultrafine grained aluminum alloy”, Metallurgical and Materials Transactions A, Vol. 527, pp. 7719-7730, November 2010.
[44]. R. D. Doherty, “Role of interfaces in kinetics of internal shape changes”, Metal Science, Vol. 16, pp. 1-13, January 1982.
[45]. K. J. Gardner and R. Grime, Recrystallization during hot deformation of aluminum alloys, Metal Science, Vol. 13, pp. 216-222, March-April 1979.
[46]. J. Osten, B. Milkereit, C. Schick and O. Kessler, “Dissolution and precipitation behaviour during continuous heating of Al–Mg–Si alloys in a wide range of heating rates”, Materials, Vol. 8, pp. 2830-2848, May 2015.
[47]. X. M. Li and M. J. Starink, “Analysis of precipitation and dissolution in overaged 7xxx Aluminium alloys using DSC”, Materials Science Forum, Vol. 331-337, pp. 1071-1076, January 2000.
[48]. P. N. Adler and R. Delasi, “Calorimetric studies of 7000 series aluminum alloys: II. Comparison of 7075, 7050 and RX720 alloys”, Metallurgical Transactions A, Vol. 8, pp. 1185-1190, July 1977.
[49]. C. Badini, F. Marino and A. Tomasi, “DSC study of ageing sequence in 6061 aluminum alloy-SiC whiskers composite”, Materials Chemistry and Physics, Vol. 25, pp. 57-70, April 1990.
[50]. 李溢芸,王文雄,徐永富,童山,「Cu/Mg 比對Al-Zn-Mg-Cu 高強度鋁合金時效析出行為的影響」,國立台灣大學材料工程學系,國立台北科技大學材料與資源工程學系,與中山科學研究院材料暨光電研究所之合作計畫。
指導教授 施登士(Teng-Shih Shih) 審核日期 2018-8-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明