參考文獻 |
[1]. K. T. Kashyap and T. Chandrashekar, “Effects and mechanisms of grain refinement in aluminium alloys”, Bulletin of Materials Science, Vol. 24, pp. 345-353, August 2001.
[2]. L. Arnberg, L. Backerud and H. Klang, “Intermetallic particles in AI- Ti-B-type master alloys for grain refinement of aluminium”, Journal of Materials Science and Technology, Vol. 9, pp. 7-13, January 1982.
[3]. A. B. Pattnaik, S. Das, B. B. Jha and N. Prasantha, “Effect of Al–5Ti–1B grain refiner on the microstructure, mechanical properties and acoustic emission characteristics of Al5052 aluminium alloy”, Journal of Materials Research and Technology, Vol. 4, pp. 171-179, June 2015.
[4]. F. Wang, D. Qiu, Z. L. Liu, J. A. Taylor, M. A. Easton and M. X. Zhang, “The grain refinement mechanism of cast aluminium by zirconium”, Acta Materialia, Vol. 61, pp. 5636-5645, September 2013.
[5]. A. A. Rao, B. S. Murty, and M. Chakraborty, “Role of zirconium and impurities in grain refinement of aluminium lNith AI-Ti-B”, Journal of Materials Science and Technology, Vol. 13, pp. 769-777, September 1997.
[6]. S.H. Seyed Ebrahimi, M. Emamy, N. Pourkia, and H.R. Lashgari, “The microstructure, hardness and tensile properties of a new super high strength aluminum alloy with Zr addition”, Materials and Design, Vol. 31, pp. 4450-4456, October 2010.
[7]. H.C. Fang, K.H. Chen, X. Chen, L.P. Huang, G.S. Peng and B.Y. Huang, “Effects of Zr, Cr and Pr addition on microstructures and properties of ultra-high strength Al-Zn-Mg-Cu alloys”, Materials Science and Engineering A, Vol. 528, pp. 7606-7615, September 2011.
[8]. Y.V. Milman, A.I. Sirko, D.V. Lotsko, O.N. Senkov and D.B Miracle, “Microstructure and mechanical properties of cast and wrought Al-Zn-Mg-Cu alloys modified with Zr and Sc”, Materials Science Forum, Vol. 396-402, pp. 1217-1222, July 2002.
[9]. H. Adachi, K. Osamura, K. Kikuchi and J. Kusui, “Effect of Zr addition on dynamic recrystallization during hot extrusion in Al alloys”, Materials Transactions, JIM, Vol. 46, pp. 211-214, January 2005.
[10]. A. C. Umamaheshwer Rao, V. Vasu, M. Govindaraju and K. V. Sai Srinadh, “Stress corrosion cracking behaviour of 7xxx aluminum alloys: A literature review”, Transactions of Nonferrous Metals Society of China, Vol. 26, pp. 1447-1471, June 2016.
[11]. M. O. Speidel, “Stress Corrosion Cracking of Aluminum Alloys”, Metallurgical Transactions A, Vol. 6, pp. 631-651, April 1975.
[12]. M. B. Kannan, P. B. Srinivasan and V. S. Raja, “Stress corrosion cracking (SCC) of aluminium alloys”, Woodhead Publishing Series in Metals and Surface Engineering, pp. 307-340, September 2011.
[13]. Z. Chen, Y. Mo and Z. Nie, “Effects of Zn content on the microstructure and properties of super-high strength Al-Zn-Mg-Cu alloys”, Metallurgical and Materials Transactions A, Vol. 44, pp. 3910-3920, December 2013.
[14]. L.F. Mondolfo, “Structure of the aluminum: magnesium: zinc alloys”, Metallurgical Reviews, Vol. 16, pp. 95-124, January 1971.
[15]. K. Asano and K. I. Hirano, “Precipitation process in an Al-Zn-Mg alloy”, Transactions of the Japan Institute of Metals, Vol. 9, pp. 24-34, 1968.
[16]. J.J. Thompson, E, S, Tankins and V. S. Agarwala, “A heat treatment for reducing corrosion and stress corrosion cracking susceptibilities in 7XXX aluminum alloys”, Materials Performance, Vol. 26, pp. 45-52, June 1987.
[17]. M. O. Speidel and M. V. Hyatt, Advances in corrosion science and technology, Vol. 2, Plenum Press, New York, 1972.
[18]. H. Yoshida, D. J. H. Cockayne and M. J. Whelan, “A study of Guinier-Preston zones in aluminium-copper alloys using the weak-beam technique of electron microscopy”, Philosophical Magazine A, Vol. 34, pp. 89-100, July 1976.
[19]. A.E. Mahmoud, M. G. Mahfouz and H. G. Gad- Elrab, “Influence of zirconium on the grain refinement of Al 6063 alloy”, Journal of Engineering Research and Applications, Vol. 7, pp. 188-194, July 2014.
[20]. K. E. Knipling, D. C. Dunand and D. N. Seidman. “Criteria for developing castable, creep-resistant aluminum-based alloys - A review”, Zeitschrift fur Metallkunde, Vol. 97, pp. 246-265, January 2006.
[21]. P. B. Desch and R. B. Schwarz, “Formation of Metastable L12, Phases in Al, Zr and Al-l 2.5%X-25%Zr (X = Li, Cr, Fe, Ni, Cu)”, Journal of the Less Common Metals, Vol. 168, pp. 69-80, February 1991.
[22]. M. Cabibbo, “Microstructure strengthening mechanisms in different equal channel angular pressed aluminum alloys”, Materials Science and Engineering A, Vol. 560, pp. 413-432, January 2013.
[23]. J. Zhang, Y. N. Huang, C. Mao and P. Peng, “Structural, elastic and electronic properties of y (Al2Cu) and S (Al2CuMg) strengthening precipitates in Al–Cu–Mg series alloys: First-principles calculations”, Solid State Communications, Vol. 152, pp. 2100-2104, December 2012.
[24]. A. Deschamps, Y. Bre’ chet, and F. Livet, “Influence of copper addition on precipitation kinetics and hardening in Al–Zn–Mg alloy” , Materials Science and Technology, Vol. 15, pp. 993-1000, September 1999.
[25]. X. Fan, D, Jiang, Q. Meng and L. Zhong, “The microstructural evolution of an Al–Zn–Mg–Cu alloy during homogenization”, Materials Letters, Vol 60, pp. 1475-1479, June 2006.
[26]. G. W. Lorimer and R. B. Nicholson, “Further results on the nucleation of precipitates in the Al-Zn-Mg system”, Acta Metallurgica, Vol. 14, pp. 1009-1013, August 1966.
[27]. P. N. T. Unwin and R. B. Nicholson, “The nucleation and initial stages of growth of grain boundary precipitates in Al-Zn-Mg and Al-Mg alloys”, Acta Metallurgica, Vol. 17, pp. 1397-1393, November 1969.
[28]. H. P. Degischer, W. Lacom, A. Zahra and C. Y. Zahra, “Decomposition processes in an Al--5% Zn--1% Mg Alloy. II.--Electromicroscopic investigation”, Zeitschrift fur Metallkunde, Vol. 71, pp. 231-238, 1980.
[29]. A. Deschamps, F. Livet and Y. Brechet, “Influence of predeformation on ageing in an Al–Zn–Mg alloy—I. Microstructure evolution and mechanical properties”, Acta Materialia, Vol. 47, pp. 281-292, December 1998.
[30]. A. Deschamps and Y. Brechet, “Influence of predeformation and ageing of an Al–Zn–Mg alloy—II. Modeling of precipitation kinetics and yield stress”, Acta Materialia, Vol. 47, pp. 293-305, December 1998.
[31]. 張哲維,「應用鑄/鍛生產高、中強度與高延性鋁合金」,國立中央大學, 碩士論文, 民國104年。
[32]. D. Altenpohl, Aluminium und Aluminiumlegierungen, Reine und angewandte Metallkunde in Einzeldarstellungen, Springer Press; 1 edition, Berlin, January 1965.
[33]. W. Gruhl, “The stress-corrosion behavior of high-strength Al-Zn-Mg alloys”, Aluminum alloys in the aircraft industries, Vol. 54, pp. 323-325, 1978.
[34]. D. A. Hardwick, A. W. Thompson and I. M. Bernstein, “The Effect of copper contents and microstructure on the hydrogen embrittlement of Al-6Zn-2Mg alloys”, Metallurgical Transactions A, Vol. 14, pp. 2517-2526, December 1983.
[35]. B. Sarkar, M. Marek, E. A. Starke, “The effect of copper content and heat treatment on the stress corrosion characteristics of Ai-6Zn-2Mg-XCu alloys”, Metallurgical Transactions A, Vol. 12, pp. 1939-1943, November 1981.
[36]. T. H. Sanders, E. A. Starke, “The relationship of microstructure to monotonic and cyclic straining of two age hardening aluminum alloys”, Metallurgical Transactions A, Vol. 7, pp. 1407-1418, September 1976.
[37]. A. Vasudevan and R. Doherty, Aluminum alloys – contemporary research and applications, Vol. 31, Academics Press, San Diego, December 1989.
[38]. F. Czerwinski, W. Kasprzak, D. G. Sediako, D. Emadi, S. K. Shaha, J. Friedman, D. Chen, “Development of high temperature aluminum alloys for automotive powertrain”, Advanced Materials and Processes, Vol. 174, pp. 16-20, March 2016.
[39]. F. H. Gao, N. K. Li, N. Tian, Q. Sun, X. D. Liu and G. Zhao, “Overheating temperature of 7B04 high strength aluminum alloy”, Transactions of Nonferrous Metals Society of China, Vol. 18, pp. 321-326, April 2008.
[40]. Y. L. Deng, Y. Y. Zhang, L. Wan, A. A. Zhu and X. M. Zhang, “Three-stage homogenization of Al-Zn-Mg-Cu alloys containing trace Zr”, Metallurgical and Materials Transactions A, Vol. 44, pp. 2470-2477, June 2013.
[41]. 魏千竣,「鑄/鍛鋁合金的微結構對機械性質的影響」,國立中央大學,碩士論文,民國105年。
[42]. R. Abbaschian, L. Abbaschian and R. E. Reed-Hill, Physical Metallurgy Principles-SI version, 4th edition, Cengage Learning Press, May 2009.
[43]. P. S. De and R. S. Mishra, “Microstructural evolution during fatigue on ultrafine grained aluminum alloy”, Metallurgical and Materials Transactions A, Vol. 527, pp. 7719-7730, November 2010.
[44]. R. D. Doherty, “Role of interfaces in kinetics of internal shape changes”, Metal Science, Vol. 16, pp. 1-13, January 1982.
[45]. K. J. Gardner and R. Grime, Recrystallization during hot deformation of aluminum alloys, Metal Science, Vol. 13, pp. 216-222, March-April 1979.
[46]. J. Osten, B. Milkereit, C. Schick and O. Kessler, “Dissolution and precipitation behaviour during continuous heating of Al–Mg–Si alloys in a wide range of heating rates”, Materials, Vol. 8, pp. 2830-2848, May 2015.
[47]. X. M. Li and M. J. Starink, “Analysis of precipitation and dissolution in overaged 7xxx Aluminium alloys using DSC”, Materials Science Forum, Vol. 331-337, pp. 1071-1076, January 2000.
[48]. P. N. Adler and R. Delasi, “Calorimetric studies of 7000 series aluminum alloys: II. Comparison of 7075, 7050 and RX720 alloys”, Metallurgical Transactions A, Vol. 8, pp. 1185-1190, July 1977.
[49]. C. Badini, F. Marino and A. Tomasi, “DSC study of ageing sequence in 6061 aluminum alloy-SiC whiskers composite”, Materials Chemistry and Physics, Vol. 25, pp. 57-70, April 1990.
[50]. 李溢芸,王文雄,徐永富,童山,「Cu/Mg 比對Al-Zn-Mg-Cu 高強度鋁合金時效析出行為的影響」,國立台灣大學材料工程學系,國立台北科技大學材料與資源工程學系,與中山科學研究院材料暨光電研究所之合作計畫。 |