博碩士論文 105323105 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:13.59.72.254
姓名 吳家森(Jia-Sen Wu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 陽極皮膜生長行為與變形對鋁合金陽極皮膜的抗腐蝕能力與光學性質的影響
相關論文
★ 7005與AZ61A拉伸、壓縮之機械性質研究★ 雷射去除矽晶圓表面分子機載污染參數的最佳化分析
★ 球墨鑄鐵的超音波檢測★ 模具溫度對TV前框高亮光澤產品研討
★ 高強度7075-T4鋁合金之溫間成形研究★ 鎂合金燃燒、鑽削加工與表面處理之研究
★ 純鈦陽極處理技術之研發★ 鋁鎂合金陽極處理技術之研發
★ 電化學拋光處理、陽極處理中硫酸流速與封孔處理對陽極皮膜品質之影響★ 電解液溫度與鋁金屬板表面粗糙度對陽極處理後外觀的影響
★ 製程參數對A356鋁合金品質的影響及可靠度的評估★ 噴砂與前處理對鋁合金陽極皮膜品質的影響
★ 鎂合金回收重溶之品質與疲勞性質分析★ 鋁合金熱合氧化膜與陽極氧化膜成長行為之研究
★ 潤滑劑與製程參數對Al-0.8Mg-0.5Si鋁合金擠壓鑄件的影響★ 摩擦攪拌製程對AA5052鋁合金之微觀組織及對陽極皮膜的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 鋁的陽極氧化機制複雜,許多學者對於孔洞的形成原因提出了焦耳熱模型、電場輔助溶解模型、應力驅使氧化物流動模型、水解離模型以及氧氣泡模具模型…等理論。其中,氧氣泡模具理論為孔道由下而上突破氧化層為主的機制,並且氧氣泡理論也能合理解釋多孔陽極氧化鋁在鋁基地表面所形成的半球型結構。本研究探討鋁合金硫酸陽極氧化皮膜表面上的初始孔洞形成並對氧氣泡在氧化鋁層中所受的電場應力進行量化。最後,根據計算而得到的電場應力結果,對文獻中未提及的氧氣泡在氧化層中突破表面的機制進行說明。另外,本研究也對電流密度和電解液溫度對5N純鋁與AA1050陽極氧化的影響以及變形對純鋁、AA7005-T7、AA7075-T5、AA7075-T6和AA7075-T73的陽極氧化行為、微結構變化、抗腐蝕能力與光學性質進行實驗。
本研究共分三部分,第一部份的實驗探討硫酸陽極氧化的行為,並分別對COMSOL模擬凹槽處的電場強度、TEM觀察初始陽極氧化階段的橫截面以及氣泡介面的電場應力值進行調查;第二部分的實驗則是對5N純鋁及AA1050進行四種陽極條件(293K, 1.2 A/dm2 、283K,1.5 A/dm2、303K, 1.5 A/dm2和293K, 1.8 A/dm2)硫酸陽極實驗,量測陽極時的電壓與時間的關係(V-t曲線)、陽極皮膜的孔洞形貌與特徵;另外,實驗也包括不同變形量(0%、30%、50%及70%)對5N純鋁陽極氧化行為的影響;實驗的第三部份將對AA7005-T7、AA7075-T5、AA7075-T6和AA7075-T73的試片進行冷輥軋變形(0%、5%和10%)後,對其微結構、物理性質、抗腐蝕能力與光學性質進行研究。測試結果顯示,氧氣泡在電場下受擠壓應力可達31.8 MPa;氫含量有助於氧氣泡的成長;變形會影響陽極孔洞的生長與皮膜的品質與降低材料的抗腐蝕能力。
摘要(英) The pore formation in anodization processes was complex and draw many scholars to present different models for discussion; mainly concerning the transient development of anodic alumina oxide film (AAO film). These models included “Joule heat”, “Field-assisted dissolution”, “Water-dissolution” and “Stress driven oxide flow”, etc. Recently, a model called “Oxygen bubble mould effect” was presented and published. It described that oxygen bubble could generate the hemi spherical structure on anodic alumina matrix.
This study proposed a new interpretation about the pore formation in the anodic alumina film with sulfuric acid solution. We calculated the electric stresses acting on oxygen bubble interface, and describde how the oxygen bubble evolved during the anodizing process. Effects of different anodizing parameters, such as current densities and electrolytic temperatures, on anodic behavior were further discussed. All discussions were based upon experimental results; including the microstructures of AAO film, voltage-time curve, anti-corrosion and optical properties of different 7000 series aluminum alloys. Processing parameters included degree of deformation (0%, 5% and 10%) and different heat treatments (T5, T6, T7 and T73).
This study used a software called “COMSOL” to simulate electrical strength around a cavity. Cross sections of anodized samples were observed by transmission microscope. The electric stresses acting on the interface of an oxygen bubble was computed and highlight its magnitude under different parameters (293K, 1.2 A/dm2、283K,1.5 A/dm2、303K, 1.5 A/dm2 and 293K, 1.8 A/dm2). The voltage-time (V-T) curveused to distinguish t different growing stages. Experiments were also conducte to study the microstructure, physical properties, anti-corrosion and optical properties of AA7005-T7、AA7075-T5、AA7075-T6 and AA7075-T73 samples affected by different degress of cold rolling.
關鍵字(中) ★ 硫酸陽極氧化
★ 變形
★ 純鋁
★ AA7005
★ AA7075
關鍵字(英) ★ Sulfuric acid anodization
★ cold working
★ pure aluminum
★ AA7005
★ AA7075
論文目次 中文摘要……………………………………………………………………………………….I
Abstract………………………………………………………………………………………..II
目錄……………………………………………………………………………………….…..III
圖目錄……………………………………………………………………………..…....…..…V
表目錄………………………………………………………………………………….……XII
第一章 前言…………………………………………………………….……………………..1
第二章 理論探討與文獻回顧…………………………………………………………….…2
2-1 純鋁介紹…………………………………………………………………………….2
2-2 7xxx系鋁合金介紹………………………………………………………….…….…2
2-2-1 鋁鋅鎂合金介紹(Al-Zn-Mg)……………………………………….………..3
2-2-2 鋁鋅鎂銅合金介紹(Al-Zn-Mg-Cu)…………………………...………….….3
2-2-3 T5、T6及T73熱處理……………………………………………………….5
2-2-4 固溶處理後冷加工對AA7075的影響……………………………...……..7
2-3 鋁及鋁合金陽極處理……………………………………………….………………9
2-3-1陽極氧化鋁的結構………………………………………………………..…9
2-3-2陽極處理過程中的現象…………………………………………………....13
2-3-3 初始孔洞的生長模型……………………………………………………...16
2-3-4 穩定階段孔洞的生長模型………………………………………………...19
2-3-5 氫以及合金元素在鋁合金中的陽極行為…………………………….…..28
2-3-6 表面粗糙度對鋁及鋁合金的陽極氧化行為的影響…………………..…33
2-3-7 鋁合金陽極氧化膜的封孔處理…………………………………………..37
2-4 鋁合金的腐蝕…………………………………………………………………...…39
第三章 實驗方法與步驟……………………………………………………………….……43
3-1 實驗材料與試片整理……………………………………………..……………….43
3-2 實驗儀器…………………………………………………………….……………..43
3-3 實驗步驟………………………………………………………………………..….44
第四章 結果與討論…………………………………………………………………………49
4-1 鋁合金在硫酸電解液中的陽極氧化機制探討………………………………...…49
4-1-1 當電流接通後的初始電壓門檻為V0……………………………………51
4-1-2 第一階段的陽極生長行為…………………………………………………51
4-1-3 第二階段的陽極生長行為…………………………………………………53
4-1-4 第三階段的陽極生長行為…………………………………………………55
4-1-5 計算氧氣泡在電場作用下所受到的應力值………………………………56
4-2 陽極條件對鋁合金陽極氧化行為的影響……………………………………….61
4-2-1 雜質元素對鋁合金陽極皮膜完整性的影響………………………………61
4-2-2 陽極參數對不同純度的純鋁其陽極行為與孔洞形成的影響……………62
4-3 變形對鋁合金陽極行為的影響……………………………………………..…….67
4-3-1 變形對純鋁陽極皮膜的影響……………………………………………68
4-4 時效後冷輥軋變形對7xxx鋁合金微結構、物理性質、陽極行為、抗腐蝕能力與光學性質的影響…………………………………………………………………………..….72
4-4-1 時效後冷輥軋變形對7xxx鋁合金微結構與物理性質的影響…………72
4-4-2 時效後冷輥軋變形對7xxx鋁合金陽極氧化行為的影響………………86
4-4-3 時效熱處理7xxx系鋁合金在冷輥軋變形後與硫酸陽極處理加熱水封孔後的動態極化曲線分析……………………………………………………………………99
4-4-4 時效熱處理7xxx系鋁合金陽極處理前後以及封孔處理的色澤變化與光學性質………………………………………………………………………………….112
第五章 結論…………………………………………………………………………….….120
參考文獻……………………………………………………………………………………121
附錄………………………………………………………………………………….………129
參考文獻 [1]. N. P. E. Utami, H. Chandra, “Mechanical properties analysis of Al-9Zn-5Cu-4Mg cast alloy by T5 heat treatment”, MATEC Web of Conferences, Vol 101, pp. 01009, 2017.
[2]. F. Liu, Z. Zhang, L. Liu, “Microstructure evolution of Al/Mg butt joints welded by gas tungsten arc with Zn filler metal”, Materials Characterization, Vol 69, pp. 84-89, 2012.
[3]. A. Joshi, C.R. Shastry, M. Levy, “Effect of Heat Treatment on Solute Concentration at Grain Boundaries in 7075 Aluminum Alloy”, Metallurgical Transactions A, Vol 12A, pp. 1081-1088, 1981.
[4]. A. Deschamps, Y. Bre ?chet, F. Livet, “Influence of copper addition on precipitation kinetics and hardening in Al-Zn-Mg alloy”, Journal of Materials Science & Technology, Vol 15, pp. 993-1100, 1999.
[5]. D. W. Strawbridge, W.H. Rothery, A.T. Little, “The constitution of aluminium-copper-magnesium-zinc alloys at 460°C”, Journal of Materials Science, Vol 74, pp.191-225, 1948.
[6]. D. K. Pratiwi, N.P.E. Utami, “Effect of ageing time 200 °C on microstructure behaviour of Al-Zn-Cu-Mg cast alloys”, MATEC Web of Conferences, Vol 101, pp. 01008, 2017.
[7]. Q.J. Meng, G.S. Frekel, ’’Effect of Cu Content on Corrosion Behavior of 7xxx series Aluminum Alloys” , Journal of The Electrochemical Society, Vol 151, pp. 271-283, 2004.
[8]. I. Hisashi, K. Masashi, K. Katsuyoshi, O. Isamu, I. Hiroshi, “Characteristics of hot extruded P/M aluminum alloy when using the rapidly solidified powder SWAP process”, Transactions of JWRI, Vol 36, pp. 33-38, 2007.
[9]. J.F. Li, Z.W. PENG, C.X LI, Z.Q. JIA, W.J. CHEN, Z.Q. ZHENG, “Mechanical properties, corrosion behaviors and microstructures of 7075 aluminium alloy with various aging treatments”, Transactions of Nonferrous Metals Society of China, Vol 18, pp. 755-762, 2008.
[10]. F. Viana, A.M.P. Pinto, H.M.C. Santos, A.B. Lopes, “Retrogression and re-ageing of 7075 aluminium alloy:microstructural characterization”, Journal of Materials Processing Technology, Vol 92–93, pp. 54-59, 1999.
[11]. S.H. Jung, J. Lee, M. Kawasaki, “Effects of Pre-Strain on the Aging Behavior of Al 7075 Alloy for Hot-Stamping Capability”, Metals, Vol 8, pp. 137, 2018.
[12]. S. Ono, “??????????酸化皮膜?構造?成長機構???真空中????放出特性”, Journal of the Vacuum Society of Japan, Vol 52, pp. 637-644, 2009.
[13]. H. Takahashi, Y. Saito, M. Nagayama, “???????????型????酸化皮膜?生成?動????電解質?????響影, Journal of The Surface Finishing Society of Japan, Vol 33, pp. 225-229, 1982.
[14]. G.E. Thompson, “Porous anodic alumina: fabrication, characterization and application”, Thin Solid Films, Vol 297, pp. 192-201, 1997.
[15]. Kape, J. M. “Unusual Anodization Processes and Their Practical Significance”, Electroplating & metal finishing, Vol 14, pp. 407-415, 1961.
[16]. F. Keller, M.S. Hunter, D.L. Robinson, “Structural Feature of Oxides Coatings on Aluminum”, Journal of The Electrochemical Society, Vol 100, pp. 411-419, 1953.
[17]. J.P. O′Sullivan, G.C. Wood, “The Morphology and Mechanism of Formation of Porous Anodic Films on Aluminium”, Proceedings of the Royal Society of London A, Vol 317, pp. 511-543, 1970.
[18]. H. Masuda, F. Hasegwa, S. Ono, “Self-Ordering of Cell Arrangement of Anodic Porous Alumina Formed in Sulfuric Acid Solution”, Journal of The Electrochemical Society, Vol 144, pp. L127-L130, 1997.
[19]. G.E. Thompson, R.C. Furneaux, G.C. Wood, “Electron Microscopy of Ion Beam Thinned Porous Anodic Films Formed on Alumium”, Corrosion Science, Vol 18, pp. 481-498, 1978.
[20]. G. E. Thompson, G. C. Wood, “Porous anodic film formation on aluminum”, Nature, Vol 290, pp. 230-232, 1981.
[21]. P.G. Shewmon, Diffusion in Solids, 1st edition, MacGraw Hill Book Company, 1963; 2nd edition, The Minerals, Metals & Materials Society, Warrendale, USA, 1989.
[22]. M.M. Lohrengel, “Thin anodic oxide layers on aluminum and other valve metals: high field regimes”, Materials Science and Engineering: R: Reports, Vol 11, pp. 243-294 1993.
[23]. S.K. Lazarouk, P.S. Katsuba, A.A. Leshok, V.B. Vysotskii, “Effect of the local electric field on the formation of an ordered structure in porous anodic alumina”, Technical Physics, Vol 60, pp.1343-1347, 2015.
[24]. M. M. Doma’nska, M. Norek, W.J. Stepniowski, B. Budner, “Fabrication of high quality anodic aluminum oxide (AAO) on low purity aluminum-A comparative study with the AAO produced on high purity aluminum”, Electrochimica Acta, Vol 105, pp. 424-432, 2013.
[25]. B. Gaston-Garcia, E. Garcia-Lecina, J. A. Diez, M. Belenguer, C. Muller, “Local Burning Phenomena in Sulfuric Acid Anodizing: Analysis of Porous Anodic Alumina Layers on AA1050”, Electrochemical and Solid-State Letters, Vol 13, pp. C33-C35, 2010.
[26]. S. Ono, M. Saito, M. Ishiguro, H. Asoh, “Controlling Factor of Self-Ordering of Anodic Porous Alumina”, Journal of The Electrochemical Society, Vol 151, pp. B473-B478, 2004.
[27]. V.O. Quentin, N, Bernard, P. Joris, “In situ detection of porosity initiation during aluminum thin film anodizing”, Applied Physics Letters, Vol 94, pp. 074103, 2009.
[28]. T.P Hoar, J. Yahalom, “The Initiation of Porous in Anodic Oxide Film Formed on Aluminum in Acid Solutions”, Journal of The Electrochemical Society. Vol 110, pp. 614-621, 1963.
[29]. J. Yang, H.T. Huang, Q.F. Lin, L.F. Lu, X.Y. Chen, L.Y. Yang, X.F. Zhu, Z.Y. Fan, Y. Song, D.D. Li, “Morphology defects guided pore initiation during the formation of porous anodic alumina”, Acs Applied Materials & Interfaces, Vol 6, pp. 2285-2291, 2014.
[30]. O. Jessensky, F. Mu‥ller, U. Go ?sele, “Self-organized formation of hexagonal pore arrays in anodic alumina”, Applied Physics Letters, Vol 72, pp. 1173-1175, 1998.
[31]. S.J. Garcia-Vergara, P. Skeldon, G.E. Thompson, H. Habazaki, “A flow model of porous anodic film growth on aluminum”, Electrochimica Acta, Vol 52, pp. 681-687, 2006.
[32]. J.E. Houser, K.R. Hebert, “The role of viscous flow of oxide in the growth of self-ordered porous anodic alumina films”, Nature material, Vol 8, pp. 415-420, 2009.
[33]. J.C. Nelson, R.A. Oriani, “Stresses produced by the anodic oxidation of nickel”, Corrosion Science, Vol 37, pp. 2051-2057, 1992.
[34]. R.S. Alwitt, J. Xu, R.C. McClung, “Stresses in sulfuric acid anodized coatings on aluminum”, Journal of The Electrochemical Society, Vol 140, pp. 1241-1246, 1993.
[35]. S.E. Benjamin, F.A. Khalid, “Stress Generated on Aluminum During Anodization as a Function of Current Density and pH”, Oxidation of Metals, Vol 52, pp. 209-223, 1999.
[36]. A. Belwalkar, E. Grasing, W. Van Geertruyden, Z. Huang, W.Z. Misiolek, “Effect of Processing Parameters on Pore Structure and Thickness of Anodic Aluminum Oxide (AAO) Tubular Membranes”, Journal of Membrane Science, Vol 319, pp. 192-198, 2008.
[37]. Omer Ozgur Capraz, P. Shrotriya, P. Skeldon, G.E. Thompson, Kurt R. Hebert, “Factors Controlling Stress Generation during the Initial Growth of Porous Anodic Aluminum Oxide”, Electrochimica Acta, Vol 159, pp. 16-22, 2015.
[38]. Z. Su, W. Zhou, F. Jiang, M. Hong, “Anodic formation of nanoporous and nanotubular metal oxides”, Journal of Materials Chemistry, Vol 22, pp. 535-544, 2012.
[39]. Z. Su, W. Zhou, “Formation Mechanism of Porous Anodic Aluminium and Titanium Oxides”, Advanced Materials, Vol 20, pp. 3663-3667, 2008.
[40]. Z. Su, M. Bu‥hl, W.Z. Zhou, “Dissociation of Water During Formation of Anodic Aluminum Oxide”. Journal of the American Chemical Society, Vol 131, pp. 8497-8702, 2009.
[41]. E. Zhuravlyova, L. Iglesias-Rubianes, A. Pakes, P. Skeldon, G.E. Thompson, X.F Zhou, T. Quance, M.J. Graham, H. Habazaki, K. Shimizu, “Oxygen evolution within barrier oxide films”, Corrosion Science, Vol 44, pp. 2153-2159, 2002.
[42]. X.F.Zhu, D.D.Li, Y.Song, Y.H.Xiao, “The study on oxygen bubbles of anodic alumina based on high purity aluminum”, Materials Letters, Vol 59, pp. 3160-3163, 2005.
[43]. X.F. Zhu, L. Liu, Y. Song, H. Jia, H.D. Yu, X.M. Xiao, X.L. Yang, “Oxygen bubble mould effect: serrated nanopore formation and porous alumina growth”, Monatshefte fur Chemie - Chemical Monthly, Vol 139, pp. 999-1003, 2008
[44]. M.M. Lohrengel, “Thin anodic oxide layers on aluminium and other valve metals: high field regime”, Materials Science and Engineering: R: Reports, Vol 11, pp.243-294, 1993.
[45]. 劉鵬,姜元霞,耿敏,鄭傑,孫晨,蔡宇武,朱緒飛,多孔陽極氧化鋁孔道形成的電化學反應探討,真空科學與技術學報,第31捲,第一期,119-123頁,2011年.
[46]. M.Y. Yu, C. Li, Y. Yang, S.K. Xu, K. Zhang, H.M. C, X.F. Z, “Cavities between the double walls of nanotubes: Evidence of oxygen evolution beneath an anion-contaminated layer”, Electrochemistry Communications, Vol 90, pp. 34-38, 2018.
[47]. D.D. Li, L. Zhao, C.H. Jiang, J.G. Lu, “Formation of Anodic Aluminum Oxide with Serrated Nanochannels”, Nano Letters, Vol 10, pp. 2766-2771, 2010.
[48]. L. Iglesias-Rubianes , P. Skeldon, G.E. Thompson , U. Kreissig , D. Grambole , H. Habazaki, K. Shimizu, “Behaviour of hydrogen impurity in aluminium alloys during anodizing”, Thin Solid Films, Vol 424, pp. 201-207, 2003.
[49]. H. Habazaki, K. Shimizu, P. Skeldon, G.E. Thompson, G.C. Wood, X.F. Zhou, “Effects of alloying elements in anodizing of aluminium”, Transactions of the IMF, Vol 75, pp. 18-23, 1997.
[50]. A.K. Mukhopadhyay, “On the nature of the Fe-bearing particles influencing hard anodizing behavior of AA 7075 extrusion products”, Metallurgical and Materials Transactions A, Vol 29A, pp. 979-987, 1998.
[51]. Y. S. Huang, T.S. Shih, J.H. Chou, “Electrochemical behavior of anodized AA7075-T73 alloys as affected by the matrix structure”, Applied Surface Science, Vol 283, pp. 249-257, 2013.
[52]. WANG Yu-shun , DINGYi , MA Li-qun, “Development of Sealing Technology of Anodized Aluminum and Aluminum Alloys”, Surface Technology , Vol 39 (2010).
[53]. Yu Zuo, Peng-Hui Zhao, Jing-Mao Zhao, “The influences of sealing methods on corrosion behavior of anodized aluminum alloys in NaCl solutions”, Surface and Coatings Technology, Vol 166, pp. 237-242, 2003.
[54]. 廖啟民,防蝕工程,第五卷,第四期,29-40頁,民國80年。
[55]. N. Birbilis, M.K. Cavanaugh, R.G. Buchheit, “Electrochemical behavior and localized corrosion associated with Al7Cu2Fe particles in aluminum alloy 7075-T651”, Corrosion Science, Vol 48, pp. 4202-4215, 2006.
[56]. P.S. Wei, T.S. Shih, “Monitoring the Progressive Development of an Anodized Film on Aluminum”, Journal of The Electrochemical Society, Vol 154, pp. C678-683, 2007.
[57]. X.F. Zhu, Y. Song, L. Liu, C.Y. Wang, J. Zheng, H.B. Jia, X.L. Wang, “Electronic currents and the formation of nanopores in porous anodic alumina”, Nanotechnology, Vol 20, pp. 475305, 2009.
[58]. R.S. Ehle, B.J. Baliga, W. Katz, “Low temperature aluminum oxide deposition using trimetffilaluminum”, Journal of Electronic Materials, Vol 12, pp. 587-601, 1983.
[59]. A. M. Arjona, J. J. Fripiat, “Proton mobility in solids. Part 2.—Dielectric and diffusion measurements in boehmite”, Transactions of the Faraday Society, Vol 63, pp. 2936-2944, 1967.
[60]. S. Feliu Jr, J. A. Gonza ?lez, V. Lo ?pez, M. J. Bartolome, Escudero, E. Otero, “Characterisation of porous and barrier layers of anodic oxides on different aluminium alloys”, Journal of Applied Electrochemistry, Vol 37, pp. 1027-1037, 2007.
[61]. M.C. Zaghdoudi, M. Lallemand, “Study of the behaviour of a bubble in an electric field:steady shape and local fluid motion”, International Journal of Thermal Sciences, Vol 39, pp. 39-52, 2000.
[62]. T.S. Shih, P.C. Chen, Y.S. Huang, “Effects of the hydrogen content on the development of anodic aluminum oxide ?lm on pure aluminum, Thin Solid Films, Vol 519, pp. 7817-7825, 2011.
[63]. K. Shimizu, H. Habazaki, P. Skeldon, G. E. Thompson, and G. C. Wood, “GDOES depth profiling analysis of a thin surface film on aluminum”, Surface and Interface Analysis, Vol 27, pp. 998-1002, 1999.
[64]. C.S. Chi, J.H. Lee, I.S. Kim, H.J. Oh, “Effects of Microstructure of Aluminum Substrate on Ordered Nanopore Arrays in Anodic Alumina”, Journal of Materials Science & Technology, Vol 31, pp. 751-758, 2015.
[65]. J. M. Runge, T. Hossain, “Interfacial phenomena in 7000 series alloys and their impact on the anodic oxide”, Materials Today: Proceedings, Vol 2, pp. 5055-5062, 2015.
[66]. 魏百盛,「鋁合金熱合氧化膜與陽極氧化成長行為之研究」,中央大學,碩士論文,民國96年。
[67]. 陳正義,「不同製程參數對AA1050與AA5052陽極皮膜抗腐蝕能力的影響」,中央大學碩士論文,民國98年.
[68]. 吳奕德,「不同輥軋及退火製程對AA5052-H32鋁陽極皮膜生長的影響」,中央大學,碩士論文,民國97年。
[69]. M.S.de Miera, M. Curioni, P. Skeldon, G.E. Thompson, “The behaviour of second phase particles during anodizing of aluminium alloys”, Corrosion Science, Vol 52, pp. 2489-2497, 2010.
[70]. M. Saenz de Miera, M. Curioni, P. Skeldon, G.E. Thompson, “Modelling the anodizing behaviour of aluminium alloys in sulphuric acid through alloy analogues”, Corrosion Science, Vol 50, pp. 3410-3415, 2008.
[71]. G. Beck, R. Bretzler, “Regularity of nanopores in anodic alumina formed on orientated aluminium single-crystals”, Materials Chemistry and Physics, Vol 128, pp. 383-387, 2011.
[72]. L.X. Fan, D.L. Guo, F. Ren, Q. Fu, C.Z. Jiang, “Substrate grain boundary effects on the ordering of nanopores in anodic aluminum oxide”, Solid State Communications, Vol 148, pp. 286-288, 2008.
[73]. 鄭朝翰,「硫酸與草酸陽極皮膜的光學性質與抗腐蝕分析」,國立中央大學,碩士論文,民國101年。
[74]. N. Birbilis, R.G. Buchheit, “Electrochemical Characteristics of Intermetallic Phases in Aluminum Alloys”, Journal of The Electrochemical Society, Vol 152, pp. B140-B151, 2005.
[75]. F. Rashidi, T. Masuda, H. Asoh, S. Ono, “Metallographic effects of pure aluminum on properties of nanoporous anodic alumina (NPAA)”, Surface and Interface Anallysis, Vol 45, pp. 1490-196, 2013.
[76]. Q. Xu, H.Y. Sun, Y.H. Yang, L.H. L, Z.Y. Li, “Optical properties and color generation mechanism of porous anodic alumina ?lms”, Applied Surface Science, Vol 258, pp. 1826-1830, 2011.
[77]. C. V. Manzano, J. P. Best, J. J. Schwiedrzik, A. Cantarero, J. Michler, L. Philippe, “The influence of thickness, interpore distance and compositional structure on the optical properties of self-ordered anodic aluminum oxide films”, Journal of Materials Chemistry C, Vol 4, pp. 7658.7666, 2016.
指導教授 施登士 審核日期 2018-8-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明