參考文獻 |
[1]. N. P. E. Utami, H. Chandra, “Mechanical properties analysis of Al-9Zn-5Cu-4Mg cast alloy by T5 heat treatment”, MATEC Web of Conferences, Vol 101, pp. 01009, 2017.
[2]. F. Liu, Z. Zhang, L. Liu, “Microstructure evolution of Al/Mg butt joints welded by gas tungsten arc with Zn filler metal”, Materials Characterization, Vol 69, pp. 84-89, 2012.
[3]. A. Joshi, C.R. Shastry, M. Levy, “Effect of Heat Treatment on Solute Concentration at Grain Boundaries in 7075 Aluminum Alloy”, Metallurgical Transactions A, Vol 12A, pp. 1081-1088, 1981.
[4]. A. Deschamps, Y. Bre ?chet, F. Livet, “Influence of copper addition on precipitation kinetics and hardening in Al-Zn-Mg alloy”, Journal of Materials Science & Technology, Vol 15, pp. 993-1100, 1999.
[5]. D. W. Strawbridge, W.H. Rothery, A.T. Little, “The constitution of aluminium-copper-magnesium-zinc alloys at 460°C”, Journal of Materials Science, Vol 74, pp.191-225, 1948.
[6]. D. K. Pratiwi, N.P.E. Utami, “Effect of ageing time 200 °C on microstructure behaviour of Al-Zn-Cu-Mg cast alloys”, MATEC Web of Conferences, Vol 101, pp. 01008, 2017.
[7]. Q.J. Meng, G.S. Frekel, ’’Effect of Cu Content on Corrosion Behavior of 7xxx series Aluminum Alloys” , Journal of The Electrochemical Society, Vol 151, pp. 271-283, 2004.
[8]. I. Hisashi, K. Masashi, K. Katsuyoshi, O. Isamu, I. Hiroshi, “Characteristics of hot extruded P/M aluminum alloy when using the rapidly solidified powder SWAP process”, Transactions of JWRI, Vol 36, pp. 33-38, 2007.
[9]. J.F. Li, Z.W. PENG, C.X LI, Z.Q. JIA, W.J. CHEN, Z.Q. ZHENG, “Mechanical properties, corrosion behaviors and microstructures of 7075 aluminium alloy with various aging treatments”, Transactions of Nonferrous Metals Society of China, Vol 18, pp. 755-762, 2008.
[10]. F. Viana, A.M.P. Pinto, H.M.C. Santos, A.B. Lopes, “Retrogression and re-ageing of 7075 aluminium alloy:microstructural characterization”, Journal of Materials Processing Technology, Vol 92–93, pp. 54-59, 1999.
[11]. S.H. Jung, J. Lee, M. Kawasaki, “Effects of Pre-Strain on the Aging Behavior of Al 7075 Alloy for Hot-Stamping Capability”, Metals, Vol 8, pp. 137, 2018.
[12]. S. Ono, “??????????酸化皮膜?構造?成長機構???真空中????放出特性”, Journal of the Vacuum Society of Japan, Vol 52, pp. 637-644, 2009.
[13]. H. Takahashi, Y. Saito, M. Nagayama, “???????????型????酸化皮膜?生成?動????電解質?????響影, Journal of The Surface Finishing Society of Japan, Vol 33, pp. 225-229, 1982.
[14]. G.E. Thompson, “Porous anodic alumina: fabrication, characterization and application”, Thin Solid Films, Vol 297, pp. 192-201, 1997.
[15]. Kape, J. M. “Unusual Anodization Processes and Their Practical Significance”, Electroplating & metal finishing, Vol 14, pp. 407-415, 1961.
[16]. F. Keller, M.S. Hunter, D.L. Robinson, “Structural Feature of Oxides Coatings on Aluminum”, Journal of The Electrochemical Society, Vol 100, pp. 411-419, 1953.
[17]. J.P. O′Sullivan, G.C. Wood, “The Morphology and Mechanism of Formation of Porous Anodic Films on Aluminium”, Proceedings of the Royal Society of London A, Vol 317, pp. 511-543, 1970.
[18]. H. Masuda, F. Hasegwa, S. Ono, “Self-Ordering of Cell Arrangement of Anodic Porous Alumina Formed in Sulfuric Acid Solution”, Journal of The Electrochemical Society, Vol 144, pp. L127-L130, 1997.
[19]. G.E. Thompson, R.C. Furneaux, G.C. Wood, “Electron Microscopy of Ion Beam Thinned Porous Anodic Films Formed on Alumium”, Corrosion Science, Vol 18, pp. 481-498, 1978.
[20]. G. E. Thompson, G. C. Wood, “Porous anodic film formation on aluminum”, Nature, Vol 290, pp. 230-232, 1981.
[21]. P.G. Shewmon, Diffusion in Solids, 1st edition, MacGraw Hill Book Company, 1963; 2nd edition, The Minerals, Metals & Materials Society, Warrendale, USA, 1989.
[22]. M.M. Lohrengel, “Thin anodic oxide layers on aluminum and other valve metals: high field regimes”, Materials Science and Engineering: R: Reports, Vol 11, pp. 243-294 1993.
[23]. S.K. Lazarouk, P.S. Katsuba, A.A. Leshok, V.B. Vysotskii, “Effect of the local electric field on the formation of an ordered structure in porous anodic alumina”, Technical Physics, Vol 60, pp.1343-1347, 2015.
[24]. M. M. Doma’nska, M. Norek, W.J. Stepniowski, B. Budner, “Fabrication of high quality anodic aluminum oxide (AAO) on low purity aluminum-A comparative study with the AAO produced on high purity aluminum”, Electrochimica Acta, Vol 105, pp. 424-432, 2013.
[25]. B. Gaston-Garcia, E. Garcia-Lecina, J. A. Diez, M. Belenguer, C. Muller, “Local Burning Phenomena in Sulfuric Acid Anodizing: Analysis of Porous Anodic Alumina Layers on AA1050”, Electrochemical and Solid-State Letters, Vol 13, pp. C33-C35, 2010.
[26]. S. Ono, M. Saito, M. Ishiguro, H. Asoh, “Controlling Factor of Self-Ordering of Anodic Porous Alumina”, Journal of The Electrochemical Society, Vol 151, pp. B473-B478, 2004.
[27]. V.O. Quentin, N, Bernard, P. Joris, “In situ detection of porosity initiation during aluminum thin film anodizing”, Applied Physics Letters, Vol 94, pp. 074103, 2009.
[28]. T.P Hoar, J. Yahalom, “The Initiation of Porous in Anodic Oxide Film Formed on Aluminum in Acid Solutions”, Journal of The Electrochemical Society. Vol 110, pp. 614-621, 1963.
[29]. J. Yang, H.T. Huang, Q.F. Lin, L.F. Lu, X.Y. Chen, L.Y. Yang, X.F. Zhu, Z.Y. Fan, Y. Song, D.D. Li, “Morphology defects guided pore initiation during the formation of porous anodic alumina”, Acs Applied Materials & Interfaces, Vol 6, pp. 2285-2291, 2014.
[30]. O. Jessensky, F. Mu‥ller, U. Go ?sele, “Self-organized formation of hexagonal pore arrays in anodic alumina”, Applied Physics Letters, Vol 72, pp. 1173-1175, 1998.
[31]. S.J. Garcia-Vergara, P. Skeldon, G.E. Thompson, H. Habazaki, “A flow model of porous anodic film growth on aluminum”, Electrochimica Acta, Vol 52, pp. 681-687, 2006.
[32]. J.E. Houser, K.R. Hebert, “The role of viscous flow of oxide in the growth of self-ordered porous anodic alumina films”, Nature material, Vol 8, pp. 415-420, 2009.
[33]. J.C. Nelson, R.A. Oriani, “Stresses produced by the anodic oxidation of nickel”, Corrosion Science, Vol 37, pp. 2051-2057, 1992.
[34]. R.S. Alwitt, J. Xu, R.C. McClung, “Stresses in sulfuric acid anodized coatings on aluminum”, Journal of The Electrochemical Society, Vol 140, pp. 1241-1246, 1993.
[35]. S.E. Benjamin, F.A. Khalid, “Stress Generated on Aluminum During Anodization as a Function of Current Density and pH”, Oxidation of Metals, Vol 52, pp. 209-223, 1999.
[36]. A. Belwalkar, E. Grasing, W. Van Geertruyden, Z. Huang, W.Z. Misiolek, “Effect of Processing Parameters on Pore Structure and Thickness of Anodic Aluminum Oxide (AAO) Tubular Membranes”, Journal of Membrane Science, Vol 319, pp. 192-198, 2008.
[37]. Omer Ozgur Capraz, P. Shrotriya, P. Skeldon, G.E. Thompson, Kurt R. Hebert, “Factors Controlling Stress Generation during the Initial Growth of Porous Anodic Aluminum Oxide”, Electrochimica Acta, Vol 159, pp. 16-22, 2015.
[38]. Z. Su, W. Zhou, F. Jiang, M. Hong, “Anodic formation of nanoporous and nanotubular metal oxides”, Journal of Materials Chemistry, Vol 22, pp. 535-544, 2012.
[39]. Z. Su, W. Zhou, “Formation Mechanism of Porous Anodic Aluminium and Titanium Oxides”, Advanced Materials, Vol 20, pp. 3663-3667, 2008.
[40]. Z. Su, M. Bu‥hl, W.Z. Zhou, “Dissociation of Water During Formation of Anodic Aluminum Oxide”. Journal of the American Chemical Society, Vol 131, pp. 8497-8702, 2009.
[41]. E. Zhuravlyova, L. Iglesias-Rubianes, A. Pakes, P. Skeldon, G.E. Thompson, X.F Zhou, T. Quance, M.J. Graham, H. Habazaki, K. Shimizu, “Oxygen evolution within barrier oxide films”, Corrosion Science, Vol 44, pp. 2153-2159, 2002.
[42]. X.F.Zhu, D.D.Li, Y.Song, Y.H.Xiao, “The study on oxygen bubbles of anodic alumina based on high purity aluminum”, Materials Letters, Vol 59, pp. 3160-3163, 2005.
[43]. X.F. Zhu, L. Liu, Y. Song, H. Jia, H.D. Yu, X.M. Xiao, X.L. Yang, “Oxygen bubble mould effect: serrated nanopore formation and porous alumina growth”, Monatshefte fur Chemie - Chemical Monthly, Vol 139, pp. 999-1003, 2008
[44]. M.M. Lohrengel, “Thin anodic oxide layers on aluminium and other valve metals: high field regime”, Materials Science and Engineering: R: Reports, Vol 11, pp.243-294, 1993.
[45]. 劉鵬,姜元霞,耿敏,鄭傑,孫晨,蔡宇武,朱緒飛,多孔陽極氧化鋁孔道形成的電化學反應探討,真空科學與技術學報,第31捲,第一期,119-123頁,2011年.
[46]. M.Y. Yu, C. Li, Y. Yang, S.K. Xu, K. Zhang, H.M. C, X.F. Z, “Cavities between the double walls of nanotubes: Evidence of oxygen evolution beneath an anion-contaminated layer”, Electrochemistry Communications, Vol 90, pp. 34-38, 2018.
[47]. D.D. Li, L. Zhao, C.H. Jiang, J.G. Lu, “Formation of Anodic Aluminum Oxide with Serrated Nanochannels”, Nano Letters, Vol 10, pp. 2766-2771, 2010.
[48]. L. Iglesias-Rubianes , P. Skeldon, G.E. Thompson , U. Kreissig , D. Grambole , H. Habazaki, K. Shimizu, “Behaviour of hydrogen impurity in aluminium alloys during anodizing”, Thin Solid Films, Vol 424, pp. 201-207, 2003.
[49]. H. Habazaki, K. Shimizu, P. Skeldon, G.E. Thompson, G.C. Wood, X.F. Zhou, “Effects of alloying elements in anodizing of aluminium”, Transactions of the IMF, Vol 75, pp. 18-23, 1997.
[50]. A.K. Mukhopadhyay, “On the nature of the Fe-bearing particles influencing hard anodizing behavior of AA 7075 extrusion products”, Metallurgical and Materials Transactions A, Vol 29A, pp. 979-987, 1998.
[51]. Y. S. Huang, T.S. Shih, J.H. Chou, “Electrochemical behavior of anodized AA7075-T73 alloys as affected by the matrix structure”, Applied Surface Science, Vol 283, pp. 249-257, 2013.
[52]. WANG Yu-shun , DINGYi , MA Li-qun, “Development of Sealing Technology of Anodized Aluminum and Aluminum Alloys”, Surface Technology , Vol 39 (2010).
[53]. Yu Zuo, Peng-Hui Zhao, Jing-Mao Zhao, “The influences of sealing methods on corrosion behavior of anodized aluminum alloys in NaCl solutions”, Surface and Coatings Technology, Vol 166, pp. 237-242, 2003.
[54]. 廖啟民,防蝕工程,第五卷,第四期,29-40頁,民國80年。
[55]. N. Birbilis, M.K. Cavanaugh, R.G. Buchheit, “Electrochemical behavior and localized corrosion associated with Al7Cu2Fe particles in aluminum alloy 7075-T651”, Corrosion Science, Vol 48, pp. 4202-4215, 2006.
[56]. P.S. Wei, T.S. Shih, “Monitoring the Progressive Development of an Anodized Film on Aluminum”, Journal of The Electrochemical Society, Vol 154, pp. C678-683, 2007.
[57]. X.F. Zhu, Y. Song, L. Liu, C.Y. Wang, J. Zheng, H.B. Jia, X.L. Wang, “Electronic currents and the formation of nanopores in porous anodic alumina”, Nanotechnology, Vol 20, pp. 475305, 2009.
[58]. R.S. Ehle, B.J. Baliga, W. Katz, “Low temperature aluminum oxide deposition using trimetffilaluminum”, Journal of Electronic Materials, Vol 12, pp. 587-601, 1983.
[59]. A. M. Arjona, J. J. Fripiat, “Proton mobility in solids. Part 2.—Dielectric and diffusion measurements in boehmite”, Transactions of the Faraday Society, Vol 63, pp. 2936-2944, 1967.
[60]. S. Feliu Jr, J. A. Gonza ?lez, V. Lo ?pez, M. J. Bartolome, Escudero, E. Otero, “Characterisation of porous and barrier layers of anodic oxides on different aluminium alloys”, Journal of Applied Electrochemistry, Vol 37, pp. 1027-1037, 2007.
[61]. M.C. Zaghdoudi, M. Lallemand, “Study of the behaviour of a bubble in an electric field:steady shape and local fluid motion”, International Journal of Thermal Sciences, Vol 39, pp. 39-52, 2000.
[62]. T.S. Shih, P.C. Chen, Y.S. Huang, “Effects of the hydrogen content on the development of anodic aluminum oxide ?lm on pure aluminum, Thin Solid Films, Vol 519, pp. 7817-7825, 2011.
[63]. K. Shimizu, H. Habazaki, P. Skeldon, G. E. Thompson, and G. C. Wood, “GDOES depth profiling analysis of a thin surface film on aluminum”, Surface and Interface Analysis, Vol 27, pp. 998-1002, 1999.
[64]. C.S. Chi, J.H. Lee, I.S. Kim, H.J. Oh, “Effects of Microstructure of Aluminum Substrate on Ordered Nanopore Arrays in Anodic Alumina”, Journal of Materials Science & Technology, Vol 31, pp. 751-758, 2015.
[65]. J. M. Runge, T. Hossain, “Interfacial phenomena in 7000 series alloys and their impact on the anodic oxide”, Materials Today: Proceedings, Vol 2, pp. 5055-5062, 2015.
[66]. 魏百盛,「鋁合金熱合氧化膜與陽極氧化成長行為之研究」,中央大學,碩士論文,民國96年。
[67]. 陳正義,「不同製程參數對AA1050與AA5052陽極皮膜抗腐蝕能力的影響」,中央大學碩士論文,民國98年.
[68]. 吳奕德,「不同輥軋及退火製程對AA5052-H32鋁陽極皮膜生長的影響」,中央大學,碩士論文,民國97年。
[69]. M.S.de Miera, M. Curioni, P. Skeldon, G.E. Thompson, “The behaviour of second phase particles during anodizing of aluminium alloys”, Corrosion Science, Vol 52, pp. 2489-2497, 2010.
[70]. M. Saenz de Miera, M. Curioni, P. Skeldon, G.E. Thompson, “Modelling the anodizing behaviour of aluminium alloys in sulphuric acid through alloy analogues”, Corrosion Science, Vol 50, pp. 3410-3415, 2008.
[71]. G. Beck, R. Bretzler, “Regularity of nanopores in anodic alumina formed on orientated aluminium single-crystals”, Materials Chemistry and Physics, Vol 128, pp. 383-387, 2011.
[72]. L.X. Fan, D.L. Guo, F. Ren, Q. Fu, C.Z. Jiang, “Substrate grain boundary effects on the ordering of nanopores in anodic aluminum oxide”, Solid State Communications, Vol 148, pp. 286-288, 2008.
[73]. 鄭朝翰,「硫酸與草酸陽極皮膜的光學性質與抗腐蝕分析」,國立中央大學,碩士論文,民國101年。
[74]. N. Birbilis, R.G. Buchheit, “Electrochemical Characteristics of Intermetallic Phases in Aluminum Alloys”, Journal of The Electrochemical Society, Vol 152, pp. B140-B151, 2005.
[75]. F. Rashidi, T. Masuda, H. Asoh, S. Ono, “Metallographic effects of pure aluminum on properties of nanoporous anodic alumina (NPAA)”, Surface and Interface Anallysis, Vol 45, pp. 1490-196, 2013.
[76]. Q. Xu, H.Y. Sun, Y.H. Yang, L.H. L, Z.Y. Li, “Optical properties and color generation mechanism of porous anodic alumina ?lms”, Applied Surface Science, Vol 258, pp. 1826-1830, 2011.
[77]. C. V. Manzano, J. P. Best, J. J. Schwiedrzik, A. Cantarero, J. Michler, L. Philippe, “The influence of thickness, interpore distance and compositional structure on the optical properties of self-ordered anodic aluminum oxide films”, Journal of Materials Chemistry C, Vol 4, pp. 7658.7666, 2016. |