博碩士論文 105323113 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:69 、訪客IP:18.226.28.255
姓名 李泱叡(Yang-Ruei Lee)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 應用多體動力學於具循環氣體負載之迴轉式壓縮機振動預測模型建立
(Modeling of Vibration Prediction of a Rotary Compressor with Cyclic Gas-induced Loads Based on Multi-body Dynamics)
相關論文
★ 中尺寸LED背光模組之實驗研究★ 利用有限元素法與反應曲面法探討 金屬成型問題之最佳化設計-行星路徑旋轉鍛造傘齒輪為例
★ 以反應曲面法進行行動電話卡勾之最佳化設計★ 以微分式內涵塑性理論分析材料受軸向循環負載之塑性行為
★ A1070在累進式背擠製下的機械性質與微結構之研究★ 超音波輔助沖壓加工之應用-剪切、引伸與等通彎角擠製
★ 以有限元素法與反應曲面法分析螺旋傘齒輪之旋轉鍛造最佳化設計★ 超音波振動輔助鋁合金6061及低碳鋼S15C拉伸試驗之研究
★ 旋轉鍛造螺旋齒輪製程分析★ 等通道扭轉彎角擠製之有限元素法及反應曲面法分析
★ 以有限元素法與反應曲面法分析增量式板金成形★ 以有限元素法與反應曲面法分析螺旋傘齒輪之雙錐輥旋轉鍛造最佳化設計
★ 以有限元素法與反應曲面法分析兩點增量成形★ 引伸成形加工問題之有限元素分析
★ 應用流函數法分析軸對稱熱擠製加工問題★ 非對稱壓延加工問題之有限元素法分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 迴轉式壓縮機因構造簡單、製造成本較低等優勢被廣泛應用於家用空調系統中。壓縮機核心壓縮件透過相互配合之偏心迴轉運動達到壓縮工作流體之功效,然而偏心機構件在高速迴轉時因慣性離心力而產生動不平衡問題,此為迴轉式壓縮機主要振動源之一,另外,壓縮腔室之週期性氣體負載變化、馬達扭矩輸出不穩定等亦為壓縮機主要振動源。本研究建立一套方法能分析預測迴轉式壓縮機之振動響應,不僅考量核心轉子系統動平衡、壓縮腔室氣體負載、馬達轉速變化,壓縮機連接機架之腳墊、吸入口與吐出口連接之銅管等邊界條件亦為本方法考量因素。透過實驗方式驗證多體動力學模型具足夠可靠度,能反應真實壓縮機之振動表現,並利用此模型作為研究平台,進行配重塊對壓縮機之振動響應分析,於配重塊設計方面得兩結論:主配重塊和頂配重塊之質量配合相較個別質量偏差,對於減振功效更具影響力,質量偏差同為0.5 g但組合不同,機殼振動量可高達4倍差異;配重塊設計應考量氣體負載,有無考量氣體負載於質量設計具28.76%機殼振動量差異,於安裝相位角設計具6.25%差異。
摘要(英) With its simplicity and low cost, rotary compressors are widely adopted in household air conditionings. The geometric structure of the compressor is asymmetrical to form an eccentric cam in order to conduct the compression process of the refrigerant. However, eccentric rotation cause huge dynamic unbalance, which is one of the major vibration sources of rotary compressors. Additionally, cyclic gas-induced loads in compression chamber and unstable motor torque input also are vibration sources of rotary compressors. By establishing a multi-body dynamic model considering dynamic balance of rotor system, cyclic gas-induced loads, variation of motor speed, characteristics of rubber grommet, suction tube and discharge tube to predict the vibration response of rotary compressor. Doing experiments to verify multi-body dynamic model, which is reliable then doing a series of simulations and analysis about effects of balancers on vibration reducing. There are two conclusions, the matches of main balancers and top balancers are more effective on vibration reducing than the tolerances of balancer weights. Gas-induced loads also affect the effects of balancers, therefore it is better to consider gas-induced loads when design balancers.
關鍵字(中) ★ 迴轉式壓縮機
★ 多體動力學
★ 循環氣體負載
★ 振動預測
★ 動態響應
關鍵字(英) ★ rotary compressor
★ multi-body dynamics
★ cyclic gas-induced loads
★ vibration prediction
★ dynamic response
論文目次 摘要 I
ABSTARACT II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VII
符號對照表 VIII
第1章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 2
1-3 研究動機與目的 5
1-4 論文架構 6
第2章 壓縮腔室氣體負載計算方法 8
2-1 迴轉式壓縮機基本構造與作動原理 9
2-2 壓縮腔室容積與壓力計算 11
2-3 等效氣體力與力矩計算 13
第3章 迴轉式壓縮機多體動力學模型建立方法 16
3-1 多體動力學模擬軟體MSC.ADAMS介紹 16
3-2 迴轉式壓縮機之運動方程式 16
3-3 MSC.ADAMS之多體動力學求解方法介紹 20
3-4 迴轉式壓縮機CAE模型建立 22
3-5 數值量測方法說明 26
第4章 實驗驗證與模型應用分析 30
4-1 驗證實驗架設方法 30
4-2 實驗驗證CAE模型 34
4-3 考量氣體負載之配重塊設定對機殼振動響應分析 38
4-3-1 轉子系統之動不平衡問題與配重塊設計方法 38
4-3-2 配重塊質量對機殼振動響應分析 43
4-3-3 配重塊安裝相位角對機殼振動響應分析 49
4-4 本章結論 54
第5章 總結與未來展望 56
5-1 總結 56
5-2 未來展望 57
附錄A 拘束條件設定表 59
附錄B 迴轉式壓縮機零件名稱中英對照表 60
參考文獻 61
作者介紹 63
參考文獻 [1] P.K. Katare, V.M. Kriplani, “Decade Developments of Rotary Compressor,” International Journal of Engineering and Technology, Vol. 2, Paper No. 12, 2012.
[2] K. Imaichi, M. Fukushima, S. Muramatsu, N. Ishii, “Vibration Analysis of Rotary Compressors,” International Compressor Engineering Conference, Paper No. 407, 1982.
[3] Y. C. Park, “Transient Analysis of a Variable Speed Rotary Compressor,” Energy Conversion and Management, Vol. 51, pp. 277-287, 2010.
[4] H. Hattori, N. Kawashima, “Dynamic Analysis of a Rotor-Journal Bearing System for Twin Rotary Compressors,” International Compressor Engineering Conference, Paper No. 768, 1990.
[5] Z. Wang, X. Yu, F. Liu, Q. Feng, Q. Tan, “Dynamic Analyses for the Rotor-Journal Bearing System of a Variable Speed Rotary Compressor,” International Journal of Refrigeration, Vol. 36, pp. 1938-1950, 2013.
[6] D. Ba, W. Deng, S. Che, Y. Li, H. Guo, N. Li, X. Yue, “Gas Dynamics Analysis of a Rotary Compressor Based on CFD,” Applied Thermal Engineering, Vol. 99, pp. 1263-1269, 2016
[7] N. Ishii, M. Fukushima, M. Yamarnura, S. Fujiwara, S. Kakita, “Optimum Combination of Dimensions for High Mechanical Efficiency of a Rolling-Piston Rotary Compressor,” International Compressor Engineering Conference, Paper No. 731, 1990.
[8] R. Dufour, M. Charreyron, M. Gerard, “Dynamics Prediction of Refrigerant Rotary Compressor Crankshaft,” International Compressor Engineering Conference, Paper No. 1253, 1998.
[9] S. Lee, J. Shim, K. C. Kim, “Development of Capacity Modulation Compressor Based on a Two Stage Rotary Compressor-Part I:Modeling and Simulation of Compressor Performance,” International Journal of Refrigeration, Vol. 54, pp. 22-37, 2015.
[10] K. Okada, K. Kuyama, “Motion of Rolling Piston in Rotary Compressor,” International Compressor Engineering Conference, Paper No. 391, 1982.
[11] T. Yanagisawa, T. Shimizu, I. Chu, K. Ishijima, “Motion Analysis of Rolling Piston in Rotary Compressor,” International Compressor Engineering Conference, Paper No. 392, 1982.
[12] G. Ferraris, M. Andrianoely, A. Berlioz, R. Dufour, “Influence of Cylinder Pressure on the Balancing of a Rotary Compressor,” Journal of Sound and Vibration, Vol. 292, pp. 899-910, 2006.
[13] K. T. Ooi, T N. Wong, “A computer Simulation of a Rotary Compressor for Household Refrigerators,” Applied Thermal Engineering, Vol. 7,pp.65-78,1997.
[14] H. Zhang, J. Wu, F. Xie, A. Chen, T. Li, ”Dynamic Behaviors of the Crankshaft in Single-Cylinder and Twin-Cylinder Rotary compressors,” International Journal of Refrigeration, Vol. 47, pp.36-45, 2014.
[15] B. Wang, X. Liu, W. Shi, “A Novel Vapor Injection Structure on the Blade for Rotary Compressor,” International Compressor Engineering Conference, Paper No. 2422, 2016.
[16] J.Hung, H. Wei, Y. Hu, O. Yang, “Study on Balance System of Rotary Compressor,” International Compressor Engineering Conference, Paper No. 1896, 2008.
[17] J.Hung, Y. Hu, S. Xia, L. Ren, “Dynamic Balance Technology of Inverter Controller Rotary Compressor,” International Compressor Engineering Conference, Paper No. 1949, 2010.
[18] MSC Inc., MSC ADAMS Reference Manual, pp.11-15, 2017.
[19] J. Giesbers, “Contact Mechanics in MSC ADAMS-A Technical Evaluation of the Contact Models in Multibody Dynamics Software MSC Adams”, University of Twente, Netherlands, 2012.
[20] J. H. Zhang, “Dynamic Coupling Analysis of Rocket Propelled Sled Using Multibody-Finite Element Method,” Journal of Computer Modelling New Technologies, Vol. 18, pp. 25-30, 2014.
[21] Hui Jing, Wei Chen, Xinjian Wang, “The Analysis and Simulation of Motor’s Torque Ripple in Electric Vehicle,” Tongji University, 2011.
[22] Li Yongfana, Zhang Shuaia, Wang Jingb, “Research on the Optimization Design of Motorcycle Engine Based on DOE Methodology,” Procedia Engineering, Vol. 174, pp.740-747, 2017.
[23] J. B. McConville, “Introduction to Mechanical System Simulation Using Adams”, 2015.
指導教授 葉維磬(Wei-Ching Yeh) 審核日期 2018-8-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明