博碩士論文 105323104 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:71 、訪客IP:18.226.28.255
姓名 楊宇軒(Yu-Xuan Yang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 齊次多項式 H∞ 靜態輸出回授控制 -連續/離散系統
(Polynomially Static Output Feedback H∞ Control via Homogeneous Lyapunov Functions for Continuous- and Discrete-time Systems)
相關論文
★ 強健性扇形區域穩定範圍之比較★ 模糊系統混模強健控制
★ T-S模糊模型之建構、強健穩定分析與H2/H∞控制★ 廣義H2模糊控制-連續系統 線性分式轉換法
★ 廣義模糊控制-離散系統 線性分式轉換法★ H∞模糊控制-連續系統 線性分式轉換法
★ H∞模糊控制—離散系統 線性分式轉換法★ 強健模糊動態輸出回饋控制-Circle 與 Popov 定理
★ 強健模糊觀測狀態回饋控制-Circle與Popov定理★ H_infinity 取樣模糊系統的觀測型控制
★ H∞取樣模糊系統控制與觀測定理★ H-ihfinity取樣模糊系統動態輸出回饋控制
★ H∞模糊系統控制-多凸面法★ H∞模糊系統控制-寬鬆變數法
★ 時間延遲 T-S 模糊系統之強健 H2/H(Infinity) 控制與估測★ 寬鬆耗散性模糊控制-波雅定理
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要研究多項式模糊系統之靜態輸出回授控制器設計,使 用齊次多項式李亞普諾夫函數 (Lyapunov function) 及其對時間的導數 作為穩定條件,並同時滿足 H∞ 性能指標。本論文研究靜態輸出回授 是因為它比狀態回授能夠更廣泛的應用到實務上,而靜態輸出回授增 益設計,分別探討連續以及離散系統。連續系統中利用尤拉齊次多項 式定理建立李亞普諾夫函數 (Lyapunov function),其形式為
V (x) = xT P (x)x = 1 xT ?xxV (x)x g(g ? 1)
離散系統為避免非二次齊次多項式李亞普諾夫函數 (Lyapunov function) 在其中發生問題,在本論文中將令李亞普諾夫函數 (Lyapunov function) 為
V ( x ) = x T P ? 1 ( x ? ) x
其中 x ? 為系統狀態向量 x 裡不直接被控制器影響的系統狀態集合而 成。此限制可使後續電腦模擬時可行,內文中將詳細說明。
電腦模擬方面以平方和方法 (Sum-of-Squares) 來檢驗模糊系統的 穩定條件,並設計靜態輸出回授控制器。
摘要(英) In this thesis, we investigate H∞ control problem for both continuous- and discrete-time polynomial fuzzy systems, and to design static output feed- back controllers. The stabilization of the underlying systems can be proved via homogeneous Lyapunov method. This thesis studies static output feed- back control that is more appropriate in practical than state feedback con- trol. In continuous-time systems, Euler’s homogeneous polynomial theorem is used to formulate a Lyapunov function. It has the following form
V (x) = xT P (x)x = 1 xT ?xxV (x)x g(g ? 1)
In discrete-time systems, the Lyapunov function is formulated by
V ( x ) = x T P ? 1 ( x ? ) x
where x ? are part of x that are not directly affected by the control input. This restriction is to avoid problems when doing simulation. The details will be described later.
In numerical simulations, examples are solved via the sum-of-squares approach.
關鍵字(中) ★ 平方和
★ 多項式模糊系統
★ 尤拉齊次多項式定理
★ H_∞ 靜態輸出回授控制
關鍵字(英) ★ Sum of squares
★ Polynomial fuzzy systems
★ Euler’s theorem
★ H_∞ static output feedback control
論文目次 中文摘要..................................................................................................... i
英文摘要..................................................................................................... ii
謝誌............................................................................................................. iii
目錄............................................................................................................. iv
圖目錄......................................................................................................... vi
1、背景介紹............................................................................... 1
1.1 文獻回顧 ........................ 1
1.2 研究動機 ........................ 2
1.3 論文結構 ........................ 3
1.4 符號標記 ........................ 4
1.5 預備定理 ........................ 5
2、系統架構與主要定理........................................................... 9
2.1 模糊系統架構簡介................... 9
2.2 H∞靜態輸出回授控制系統 .............. 10
2.3 主要定理 . . . . . . . . . . . . . . . . . . . . . . . . 15
3、模糊建模方法及平方和檢測法........................................... 23
3.1 泰勒級數模糊 . . . . . . . . . . . . . . . . . . . . . . 23
3.2 平方和檢驗法 . . . . . . . . . . . . . . . . . . . . . . 25
4、電腦模擬............................................................................... 29
4.1 例題一..........................29
4.2 例題二..........................37
4.3 例題三..........................43
4.4 例題四..........................51
4.5 例題五..........................55
5、結論與未來方向................................................................... 59
5.1 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2未來研究方向 . . . . . . . . . . . . . . . . . . . . . . 60
參考文獻..................................................................................................... 61
參考文獻 [1] Tomohiro Takagi and Michio Sugeno. Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Sys- tems, Man, and Cybernetics, (1):116–132, 1985.
[2] Kazuo Tanaka and Michio Sugeno. Stability analysis and design of fuzzy control systems. Fuzzy Sets and Systems, 45(2):135–156, 1992.
[3] Hua O Wang, Kazuo Tanaka, and Michael F Griffin. An approach to fuzzy control of nonlinear systems: Stability and design issues. IEEE Transactions on Fuzzy Systems, 4(1):14–23, 1996.
[4] Kazuo Tanaka, Tsuyoshi Hori, and Hua O Wang. A multiple Lyapunov function approach to stabilization of fuzzy control systems. IEEE Trans- actions on Fuzzy Systems, 11(4):582–589, 2003.
[5] Kazuo Tanaka, Tsuyoshi Hori, and Hua O Wang. A fuzzy Lyapunov approach to fuzzy control system design. In American Control Con- ference, 2001. Proceedings of the 2001, volume 6, pages 4790–4795. IEEE, 2001.
[6] Thierry Marie Guerra and Laurent Vermeiren. LMI-based relaxed non- quadratic stabilization conditions for nonlinear systems in the takagi– sugeno’s form. Automatica, 40(5):823–829, 2004.
[7] Gang Feng. Stability analysis of discrete-time fuzzy dynamic systems based on piecewise Lyapunov functions. IEEE Transactions on Fuzzy Systems, 12(1):22–28, 2004.
[8] Ying-Jen Chen, Hiroshi Ohtake, Kazuo Tanaka, Wen-June Wang, and Hua O Wang. Relaxed stabilization criterion for T–S fuzzy systems by minimum-type piecewise-Lyapunov-function-based switching fuzzy controller. IEEE Transactions on Fuzzy Systems, 20(6):1166–1173, 2012.
61
[9] Ying-Jen Chen, Motoyasu Tanaka, Kazuo Tanaka, and Hua O Wang. Stability analysis and region-of-attraction estimation using piecewise polynomial Lyapunov functions: polynomial fuzzy model approach. IEEE Transactions on Fuzzy Systems, 23(4):1314–1322, 2015.
[10] Yanling Wei, Jianbin Qiu, Peng Shi, and Hak-Keung Lam. A new de- sign of H-infinity piecewise filtering for discrete-time nonlinear time- varying delay systems via T–S fuzzy affine models. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(8):2034–2047, 2017.
[11] Yong-Yan Cao, James Lam, and You-Xiam Sun. Static output feedback stabilization: an ILMI approach. Automatica, 34(12):1641–1645, 1998.
[12] Cristiano M Agulhari, Ricardo CLF Oliveira, and Pedro LD Peres. Static output feedback control of polytopic systems using polynomial Lyapunov functions. In Decision and Control (CDC), 2010 49th IEEE Conference on, pages 6894–6901. IEEE, 2010.
[13] Cristiano M Agulhari, Ricardo CLF Oliveira, and Pedro LD Peres. Ro- bust H∞ static output-feedback design for time-invariant discrete-time polytopic systems from parameter-dependent state-feedback gains. In American Control Conference (ACC), 2010, pages 4677–4682. IEEE, 2010.
[14] Heber R Moreira, Ricardo CLF Oliveira, and Pedro LD Peres. Robust H2 static output feedback design starting from a parameter-dependent state feedback controller for time-invariant discrete-time polytopic sys- tems. Optimal Control Applications and Methods, 32(1):1–13, 2011.
[15] Xiao-Heng Chang, Liang Zhang, and Ju H Park. Robust static output feedback H∞ control for uncertain fuzzy systems. Fuzzy Sets and Sys- tems, 273:87–104, 2015.
[16] Reianldo M Palhares, Domingos CW Ramos, and Pedro LD Peres. Al- ternative LMIs characterization of H2 and central H∞ discrete-time con- trollers. In Decision and Control, 1996., Proceedings of the 35th IEEE Conference on, volume 2, pages 1495–1496. IEEE, 1996.
[17] Bor-Sen Chen, Chung-Shi Tseng, and Huey-Jian Uang. Mixed H2/H∞ fuzzy output feedback control design for nonlinear dynamic systems:an LMI approach. IEEE Transactions on Fuzzy Systems, 8(3):249–265, 2000.
[18] Maur?cio C De Oliveira, Jose C Geromel, and Jacques Bernussou. Ex- tended H2 and H∞ norm characterizations and controller parametriza- tions for discrete-time systems. International Journal of Control, 75(9): 666–679, 2002.
[19] Gijs Hilhorst, Goele Pipeleers, Wim Michiels, and Jan Swevers. Suffi- cient LMI conditions for reduced-order multi-objective H2/H∞ control of lti systems. European Journal of Control, 23:17–25, 2015.
[20] Arash Sadeghzadeh. Robust H2 and H∞ filtering for discrete-time un- certain linear fractional transform systems. IET Control Theory & Ap- plications, 9(6):882–892, 2015.
[21] Mauricio C de Oliveira, Jacques Bernussou, and Jose C Geromel. A new discrete-time robust stability condition. Systems & Control Letters, 37(4):261–265, 1999.
[22] Kazuo Tanaka, Takayuki Ikeda, and Hua O Wang. Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs. IEEE Transactions on Fuzzy Systems, 6(2):250–265, 1998.
[23] Reinaldo M Palhares and Pedro LD Peres. Optimal filtering schemes for linear discrete-time systems: a linear matrix inequality approach. International Journal of Systems Science, 29(6):587–593, 1998.
[24] VF Montagner, RCLF Oliveira, PLD Peres, and P-A Bliman. Linear matrix inequality characterisation for H∞ and H2 guaranteed cost gain- scheduling quadratic stabilisation of linear time-varying polytopic sys- tems. IET Control Theory & Applications, 1(6):1726–1735, 2007.
[25] Stephen Prajna, Antonis Papachristodoulou, and Fen Wu. Nonlinear control synthesis by sum of squares optimization: A Lyapunov-based approach. In Control conference, 2004. 5th asian, volume 1, pages 157– 165. IEEE, 2004.
[26] Stephen Prajna, Antonis Papachristodoulou, Peter Seiler, and Pablo A Parrilo. New developments in sum of squares optimization and sos-tools. In American Control Conference, 2004. Proceedings of the 2004, volume 6, pages 5606–5611. IEEE, 2004.
[27] Jun Xu, Kai Yew Lum, Ai Poh Loh, and Lihua Xie. A sos-based ap- proach to residual generators for discrete-time polynomial nonlinear systems. In Decision and Control, 2007 46th IEEE Conference on, pages 372–377. IEEE, 2007.
[28] Jun Xu, Lihua Xie, and Youyi Wang. Synthesis of discrete-time nonlin- ear systems: A sos approach. In American Control Conference, 2007. ACC’07, pages 4829–4834. IEEE, 2007.
[29] Kazuo Tanaka, Hiroto Yoshida, Hiroshi Ohtake, and Hua O Wang. Sta- bilization of polynomial fuzzy systems via a sum of squares approach. In Intelligent Control, 2007. ISIC 2007. IEEE 22nd International Sym- posium on, pages 160–165. IEEE, 2007.
[30] Ali Chibani, Mohammed Chadli, and Naceur Benhadj Braiek. A sum of squares approach for polynomial fuzzy observer design for polynomial fuzzy systems with unknown inputs. International Journal of Control, Automation and Systems, 14(1):323–330, 2016.
[31] Kazuo Tanaka, Hiroto Yoshida, Hiroshi Ohtake, and Hua O Wang. A sum-of-squares approach to modeling and control of nonlinear dynam- ical systems with polynomial fuzzy systems. IEEE Transactions on Fuzzy systems, 17(4):911–922, 2009.
[32] Ji-Chang Lo, Yu-Tse Lin, Wei-Sheng Chang, and Fong-Yi Lin. Sos- based fuzzy stability analysis via homogeneous Lyapunov functions. In Fuzzy Systems (FUZZ-IEEE), 2014 IEEE International Conference on, pages 2300–2305. IEEE, 2014.
[33] Ji-Chang Lo and Chengwei Lin. Polynomial fuzzy observed-state feed- back stabilization via homogeneous Lyapunov methods. IEEE Trans- actions on Fuzzy Systems, 2017.
[34] Ying-Jen Chen, Hiroshi Ohtake, Kazuo Tanaka, Wen-June Wang, and Hua O Wang. Stability analysis for the polynomial fuzzy systems by utilizing equality constraints of sum-of-squares program. In System Science and Engineering (ICSSE), 2010 International Conference on, pages 36–40. IEEE, 2010.
[35] Stephen Prajna, Antonis Papachristodoulou, and Pablo A Parrilo. Intro- ducing sostools: A general purpose sum of squares programming solver. In Decision and Control, 2002, Proceedings of the 41st IEEE Confer- ence on, volume 1, pages 741–746. IEEE, 2002.
[36] Christian Ebenbauer, Jonathan Renz, and F Allgower. Polynomial feed- back and observer design using nonquadratic Lyapunov functions. In Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC’05. 44th IEEE Conference on, pages 7587–7592. IEEE, 2005.
[37] Stephen Boyd, Laurent El Ghaoui, Eric Feron, and Venkataramanan Bal- akrishnan. Linear matrix inequalities in system and control theory, vol- ume 15. Siam, 1994.
[38] Kazuo Tanaka and Hua O Wang. Fuzzy control systems design and anal- ysis: a linear matrix inequality approach. John Wiley & Sons, 2004.
[39] Antonio Sala and Carlos Arino. Polynomial fuzzy models for nonlinear control: A taylor series approach. IEEE Transactions on Fuzzy Systems, 17(6):1284–1295, 2009.
[40] Kazuo Tanaka, Hiroshi Ohtake, Toshiaki Seo, Motoyasu Tanaka, and Hua O Wang. Polynomial fuzzy observer designs: a sum-of-squares approach. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(5):1330–1342, 2012.
[41] Redouane Chaibi and AbdelAziz Hmamed. Static output feedback con- trol problem for polynomial fuzzy systems via a sum of squares (sos) approach. In 2017 Intelligent Systems and Computer Vision (ISCV), pages 1–6. IEEE, 2017.
[42] Hongyi Li, Jiahui Wang, and Peng Shi. Output-feedback based sliding mode control for fuzzy systems with actuator saturation. IEEE Trans- actions on Fuzzy Systems, 24(6):1282–1293, 2016.
[43] Huaguang Zhang, Chunbin Qin, Bin Jiang, and Yanhong Luo. Online adaptive policy learning algorithm for H∞ state feedback control of un- known affine nonlinear discrete-time systems. IEEE Transactions on Cybernetics, 44(12):2706–2718, 2014.
指導教授 羅吉昌(Ji-Chang Lo) 審核日期 2018-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明