博碩士論文 105323603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:142 、訪客IP:18.226.96.61
姓名 歐卡沙(Okasatria Novyanto)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 雙螺桿壓縮機於CFD仿真模擬之三維幾何簡化方法建立
(A Method of 3-D Geometry Simplification for CFD Simulation of a Twin-Screw Compressor)
相關論文
★ 應用調諧顆粒阻尼器於迴轉式壓縮機振動抑制之研究★ 應用離散元素法與多體動力學於齒輪傳動系統動力分析模型之建立
★ 不同氣體負載下雙螺桿壓縮機動力響應及振動頻譜特徵之預測★ 新型魯氏真空泵轉子齒形之參數化設計及性能評估
★ 以CNC內珩齒機進行螺旋齒輪齒面拓樸修整之研究★ 雙螺桿壓縮機變導程轉子齒間法向間隙之數值計算方法及其三維幾何模型驗證
★ 不同工作條件下冷媒雙螺桿壓縮機之轉子受力分析及動載響應預測★ 應用多體動力學及離散元素法於具阻尼顆粒齒輪及軸承系統抑振之研究
★ 具齒廓修形內嚙合非圓形齒輪創成之方法建立與其傳動誤差分析★ 航空發動機齒輪箱傳動系統之強度分析與改善
★ 電動車差速齒輪傳動系統之動載分析與性能評估★ 指狀銑刀安裝偏差對真空泵螺桿轉子加工精度影響之研究
★ 以CNC內珩齒機加工具鼓形之錐狀齒輪之研究★ 應用阻尼顆粒於旋轉機械之振動抑制及動平衡設計
★ 考量氣體負載下迴轉式壓縮機動態負載分析模型之建立★ 內嚙合珩磨加工圓柱齒輪與螺桿轉子方法之 研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來,雙螺桿壓縮機的性能已可透過計算流體動力學方法(CFD)
快速地進行估算。本研究提出了一種用於雙螺桿壓縮機的CFD 模擬之三
維幾何模型簡化方法。在此方法中,新提出之簡化模型是基於理論方法所
開發,即產生軸向吸氣口和排氣口的轉子輪廓與密封線,而徑向吸入口則
基於三維(3D)轉子曲線。本研究採用台灣漢鐘公司生產的注油式5/6 螺
桿式冷媒壓縮機RE-260,此類壓縮機分別具有五個與六個具專利之獨特齒
形公齒葉與母齒葉。在CFD 模型的開發中使用了三種軟件,即Wolfram
Mathematica、AutoCAD 和SolidWorks,而後將該模型導出到ANSYS Mesh,
以便生成靜態網格。為了將來自轉子域和定子域的一組生成的網格耦合,
可以使用CFD 求解器來執行該作業。TwinMesh 提供了即用型仿真設置。
最後,本研究討論了ANSYS CFX 仿真的結果,以確定新提出的簡化模型
和製造模型之間的幾何適用性。
摘要(英) Nowadays, the estimation of twin screw compressor performance can be done quickly
by using Computation Fluid Dynamics (CFD). A method of 3-D geometry simplification for
CFD simulation of a twin-screw compressor has been proposed. In this method, the new
suggested simplified model was developed based on theoretical approach, i.e. generating of
rotor profile and sealing line for the axial suction and discharge port, while the radial suction
port based on three-dimensional (3D) rotor curve. This research used an oil-injected 5/6 screw
refrigeration compressor model RE-260 made by Hanbell Co. in Taiwan. This type of
compressor has five and six lobes with patented profile of male and female rotor, respectively.
The development of CFD model used three types of software, namely Wolfram Mathematica,
AutoCAD, and SolidWorks. This model then was exported to ANSYS Mesh for the purpose of
the static grid generation. In order to couple the set of generated grids from rotor domain and
stator domain, CFD solver can be used to carry on this jobs. A ready to use simulation setup
has been provided by TwinMesh. Finally, the results of ANSYS CFX simulation have been
discussed to determine the geometric suitability between the new suggested simplified model
and the manufacturing model.
關鍵字(中) ★ 模型簡化
★ 六面體網格
★ 雙螺桿壓縮機
★ 數值模擬
關鍵字(英) ★ simplification model
★ hexahedral mesh
★ twin screw compressor
★ numerical simulation
論文目次 Chinese Abstract ……………………………………………………………… i
Abstract ……………………………………………………………… ii
Acknowledgement ……………………………………………………………… iii
Table of Contents ……………………………………………………………… iv
List of Figures ……………………………………………………………… vi
List of Tables ……………………………………………………………… vii
List of Symbols ……………………………………………………………… viii
CHAPTER I INTRODUCTION…………………………………………. 1
1-1 Background ………………………………………………... 1
1-2 Problem Statement ………………………………………… 4
1-3 Objectives ………………………………………………..... 5
1-4 Scope of the Study ………………………………………… 5
1-5 Organization of Thesis …………………………………….. 6
CHAPTER II GEOMETRIC CHARACTERIZATION OF THE TWIN
SCREW COMPRESSOR …………………………………..
7
2-1 Geometric Parameters of the Twin Screw Rotor ………….. 7
2-2 Generating of Rotor Profile and Sealing line ……………… 9
2-3 Generating of Three-Dimensional (3D) Rotor Curve ……… 12
CHAPTER III GEOMETRY SIMPLIFICATION FOR CFD MODELING
AND SIMULATION METHOD OF THE TWIN SCREW
COMPRESSOR ………………………………………….....
15
3-1 Development Method for CFD Model .................................. 15
3-1-1 Suction Port ............................................................... 17
3-1-2 Discharge Port ........................................................... 20
3-2 Generation of 3-D Stator Model Automatically .................... 22
3-3 Mesh Generation …………………………………………... 23
3-3-1 Static Grid Generation …………………………….. 23
3-3-2 Dynamic Grid Generation ………………………..... 26
3-4 Numerical Simulation Method …………………………….. 29
3-5 Simulation Setup in CFX ………………………………….. 29
v
CHAPTER IV RESULT AND DISCUSSION ……………………………. 33
4-1 Model Mesh Statistic Comparison ………………………… 33
4-2 Calculation of Pressure Distribution Inside Working
Chamber ……………………………………………………
34
4-3 Calculation of the Mass Flow Rate ………………………... 36
4-4 Calculation of Pressure Distribution at Discharge Port …… 38
4-5 Calculation of Pressure Distribution at By Pass Channel … 39
CHAPTER V CONCLUSION AND FUTURE WORK………………….. 40
5-1 Conclusion ………………………………………………… 40
5-2 Future Work ………………………………………………. 41
REFERENCES ……………………………………………………………… 42
APPENDIXES ……………………………………………………………… 45
參考文獻 [1] N. Stosic, I. K. Smith, and A. Kovacevic, Screw Compressors: Mathematical
Modelling and Performance Calculation. Springer Science & Business Media, 2005.
[2] Yu-Ren Wu and Z.-H. Fong, “Improved rotor profiling based on the arbitrary sealing
line for twin-screw compressors,” Mech. Mach. Theory, vol. 43, pp. 695–711, 2008.
[3] D. Zaytsev and C. A. I. Ferreira, “Profile Generation Method for Twin Screw
Compressor Rotors Based on the Meshing line,” Int. J. Refrig., vol. 28, no. 5, pp. 744–
755, 2005.
[4] A. Kovacevic, N. Stosic, E. Mujic, and I. K. Smith, “CFD Integrated Design of Screw
Compressors,” Eng. Appl. Comput. Fluid Mech., vol. 1, no. 2, pp. 96–108, 2007.
[5] E. Mujic, A. Kovacevic, N. Stosic, and I. K. Smith, “The Influence of Port Shape on
Gas Pulsations in a Screw Compressor Discharge Chamber,” J. Process Mech. Eng.,
vol. 222, no. 4, pp. 211–223, 2008.
[6] J. Nouri, N. Stosic, A. Kovacevic, and G. Diego, “Cycle-Resolved Velocity
Measurements Within a Screw Compressor,” in 18th International Compressor
Engineering Conference, 2006.
[7] M. Kethidi, A. Kovacevic, N. Stosic, and I. K. Smith, “Evaluation of Various
Turbulence Models in Predicting Screw Compressor Flow Processes by CFD,” in 7th
International Conference on Compressors and their Systems, 2011, pp. 347–357.
[8] M. Kethidi, A. Kovacevic, N. Stosic, and S. Rane, “Modelling of Turbulence in Screw
Compressor Fows,” in Proceedings of the Seventh International Symposium On
Turbulence, Heat and Mass Transfer, 2012.
[9] M. Arjeneh, A. Kovacevic, M. Gavaises, and S. Rane, “Study of Multiphase Flow at
the Suction of Screw Compressor,” in 22nd International Compressor Engineering
Conference, 2014.
[10] S. Rane, A. Kovacevic, N. Stosic, and M. Kethidi, “Deforming Grid Generation and
CFD Analysis of Variable Geometry Screw Compressors,” Comput. Fluids, vol. 99,
pp. 124–141, 2014.
[11] A. Kovacevic and S. Rane, “Algebraic Generation of Single Domain Computational
Grid for Twin Screw Machines,” Adv. Eng. Softw., vol. 109, pp. 31–43, 2017.
43
[12] A. Spille-Kohoff, J. Hesse, and A. El Shorbagy, “CFD Simulation of a Screw
Compressor Including Leakage Flows and Rotor Heating,” in 9th International
Conference on Compressors and their Systems, 2015, vol. 90.
[13] Y. R. Wu and V. T. Tran, Dynamic Response Prediction of a Twin-Screw Compressor
with Gas-Induced Cyclic Loads Based on Multi-Body Dynamics, vol. 65. Elsevier Ltd,
2016, pp. 111–128.
[14] C. X. You, Y. Tang, and J. S. Fleming, “Optimum Rotor Geometrical Parameters in
Refrigeration Helical Twin Screw Compressors,” in International Compressor
Engineering Conference School, 1996.
[15] L. Sjoholm, “Important Parameters for Small Twin-Screw Refrigeration Compressors,”
in International Compressor Engineering Conference, 1986.
[16] L. Zhang and J. . F. Hamilton, “Main Geometric Characteristics of the Twin Screw
Compressor,” in International Compressor Engineering Conference, 1992.
[17] F. L. Litvin, Theory of Gearing. Washington, DC.: NASA Reference Publication RP-
1212, 1989.
[18] H. Iyoi and S. Ishimura, “X-Theory in Gear Geometry,” J. Mech. Transm. Autom. Des.,
vol. 105, no. 3, pp. 286–290, 1983.
[19] T. Costopoulos, A. Kanarachos, and E. Pantazis, “Reduction of Delivery Fluctuation
and Optimum Tooth Profile of Spur Gear Rotary Pumps,” Mech. Mach. Theory, vol.
23, no. 2, pp. 141–146, 1988.
[20] N. Stosic, “On gearing of helical screw compressor rotors N,” Proc. Inst. Mech. Eng.
Part C J. Mech. Eng. Sci., vol. 212, pp. 587–594, 1998.
[21] Y. Tang and J. S. Fleming, “Clearances between the Rotors of Helical Screw
Compressors: Their Determination, Optimization and Thermodynamic Consequences,”
Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng., vol. 208, pp. 155–163, 1994.
[22] N. Stosic, I. K. Smith, A. Kovacevic, and E. Mujic, “Geometry of Screw Compressor
Rotors and Their Tools,” J. Zhejiang Univ. A, vol. 12, no. 4, pp. 310–326, 2011.
[23] Z. Xing, H. Wu, and P. Shu, “The Design of A New Generation of Twin Screw
Refrigeration Compressors,” in International Compressor Engineering Conference,
2002.
[24] I. Sadrehaghighi, “Mesh Generation in CFD,” 2018.
[25] S. Rane, A. Kovacevic, and N. Stosic, “CFD Analysis of Oil Flooded Twin Screw
Compressors,” in 23rd International Compressor Engineering Conference School,
2016.
44
[26] L. Bakhtiaryfard, S. Chen, Y. Wu, S. Hsieh, and Y. Huang, “Vibration Analysis of
Twin-Screw Compressors Under Partial Load Design : A Case Study,” in 24th
International Compressor Engineering Conference, 2018.
[27] M. Masuda, H. Ueno, T. Inoue, K. Hori, and M. A. Hossain, “Effect of variable volume
index on performance of single screw compressor,” in 8th International Conference on
Compressors and their Systems, 2013, vol. i, pp. 257–264.
指導教授 吳育仁(Yu-Ren Wu) 審核日期 2018-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明