博碩士論文 105323043 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:77 、訪客IP:3.135.249.252
姓名 李思穎(Si-Ying Li)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 生物相容性鈦鋯基多孔隙金屬玻璃製作及其性質之研究
(Synthesis and characterization of biocompatibility open-cell TiZr based metallic glass foam)
相關論文
★ 鋯基與鋯銅基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質提升之研究★ 非 晶 質 合 金 手 術 刀 與 非 晶 質 合 金 鍍 膜 手 術 刀 之 銳 利 度 研 究
★ 以急冷旋鑄法及機械冶金法製備Zn4Sb3熱電塊材及其熱電性質之研究★ 添加Ti顆粒對MgZnCa非晶質合金之機械性質研究
★ 不同製程對鋯基非晶質合金破裂韌性影響之研究★ 硼碳元素對鐵基非晶質鋼材玻璃形成能力、熱性質及切削性質影響之研究
★ 鋯銅基塊狀金屬玻璃複材和鋯基塊狀金屬 多孔材之製作及其性質分析之研究★ 添加鉭顆粒與球狀鈦合金對鎂鋅鈣非晶質合金機械性質影響之研究
★ 高速火焰熔射製備鐵基非晶質合金塗層及其耐磨耗性與抗腐蝕性之研究★ 不同製程對鋯-銅-鋁非晶質合金內析出ZrCu B2相分布及其機械性質影響之研究
★ 以塊狀金屬玻璃和其複材製作骨科鑽頭及其鑽孔能力之研究★ 鋯基塊狀金屬玻璃與金屬玻璃鍍膜 手術刀切削耐久度之研究
★ 利用急冷旋鑄及真空熱壓製備β-Zn4Sb3 奈米/微 米晶塊材之熱電性質探討★ 無鎳鋯基及鈦基金屬玻璃生物相容性之研究
★ 以鐵基金屬玻璃複材或金屬玻璃鍍膜製作手術用取皮刀並進行模擬切削性能之研究★ 探討不同結晶率對鋯鋁鈷塊狀非晶質合金機械性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 鈦合金具有相當高的生物相容性,穩定性以及高安全性。在醫療骨科植體方面有廣泛的應用,尤其是在骨折手術中所需的骨釘、骨板以及人工骨骼等。但由於鈦合金之楊氏係數(E)與人體的骨頭有相當大的差異,而導致應力遮蔽效應(stress-shielding)造成原本的骨頭萎縮;相較於鈦合金,金屬玻璃(Metallic glass)具有較低的楊氏係數、高彈性變性回彈能力、高硬度等性質,且鈦基金屬玻璃有著出色的生物相容性、低密度以及耐腐蝕性。本研究自鈦鋯系列金屬玻璃中選擇,對人體無害之成分且具較高的玻璃形成能力的Ti42Zr35Si5Sn2.5Co12.5Ta3製作多孔材,藉由參數調整製備出符合骨性細胞長入低楊氏係數之孔隙尺寸及孔隙率。首先將Ti42Zr35Si5Sn2.5Co12.5Ta3合金利用真空旋鑄機製作出鈦基金屬玻璃薄帶,再利用SPEX震動球磨機製作出鈦基金屬玻璃粉體,最後將鈦基金屬玻璃粉體添加不同體積比例之氯化鈉於其過冷溫度區間熱壓成型,並經超音波水洗後製作出鈦基金屬玻璃多孔材,製作出不同孔隙率的鈦基金屬玻璃多孔材,尺寸可達直徑約12 mm及厚度約5 mm。
鈦基金屬玻璃多孔材在孔隙率37.8 %左右的楊氏係數與機械強度和人體骨骼較為接近;分別為楊氏係數可達至24.8 GPa且機械強度為41.4 MPa,並可以透過Gibbson和Ashby的模組,模擬出50 %孔隙率以下鈦基金屬玻璃多孔材的楊氏係數與機械強度之關係。
摘要(英) Recently, Titanium base alloys have already widely used in medical applications, especially the bone nail, metal sutures, and bone implant because of its high biocompatibility, stability, and safety in human body. However, titanium alloys is much higher Young′s modulus than human bone. This leads to stress-shielding and causes atrophy of original bones (Because of the Young′s modulus mismatch, the surgery often failed due to stress-shielding.). In addition, we should be concerned about the durability, corrosion resistance and safety of Titanium alloys in human body. Compare to Titanium base alloys, Ti-based metallic glass has low Young’s modulus, excellence biocompatibility, low density, high elasticity resilience, and corrosion resistance. This research aims to make bulk metallic glass foam by using the Ti42Zr35Si5Sn2.5Co12.5Ta3 metallic glass because of its high glass forming ability and harmless to human body. At first, Ti42Zr35Si5Sn2.5Co12.5Ta3 alloy ingot was prepared by arc-melting, then re-melted and fabricated into MG ribbon by vacuum melt-spinning process. The MG ribbons were chopped and mechanical milled into MG powders by SPEX milling. Furthermore, the different volume fraction combinations of Ti-based MG powder and NaCl powder were mixed and hot-compressed in to bulk form at the supercooled temperature region of Ti-based MG. Finally, these Ti-based BMGFs with dimension of 12 mm in diameter and 4 mm in thickness were obtained by washing out the NaCl from the hot-compressed bulk samples by ultrasonic cleaning in water. Meanwhile, the results of this study show that the Ti-based BMGF with about 37.8 % porosity has similar value of Young′s modulus to human bones.
關鍵字(中) ★ 金屬玻璃
★ 熱壓成型
★ 孔隙率
★ 人工骨骼
關鍵字(英) ★ metallic glass
★ bulk metallic glass foam
★ hot compression forming
★ porosity
論文目次 摘要 I
Abstract III
致謝 IV
表目錄 VII
圖目錄 VIII
第一章 研究背景 1
1-1 前言 1
1-2 研究動機 1
第二章 理論基礎 4
2-1 金屬玻璃發展 4
2-2 實驗歸納法 6
2-2-1 合金應包含三種以上的元素 6
2-2-2 合金中原子半徑比大於12 % 6
2-2-3 主要成分間的混合熱需為負值 6
2-3 金屬玻璃之製造方法 7
2-3-1 氣態→固態 7
2-3-2 液態→固態 7
2-3-3 固態→固態 8
2-4 金屬玻璃之種類 9
2-5 金屬玻璃之特性 10
2-5-1 熱力學性質 10
2-5-2 機械性質 14
2-5-3 化學性質-耐蝕性 14
2-5-4 磁性質 15
2-5-5 生醫應用 15
2-5-6 生物相容性 15
2-5-7 其他性質 16
2-6 鈦基金屬玻璃之發展與應用 16
第三章 實驗步驟與方法 28
3-1 實驗流程 28
3-2 合金試片製備 28
3-2-1 合金配置 28
3-2-2 合金鑄錠熔製 29
3-2-3 薄帶製作 29
3-2-4 粉體製作 30
3-2-5金屬玻璃多孔材製作 30
3-3 微結構分析 30
3-3-1孔隙率 31
3-3-2 X光繞射分析儀 31
3-3-3 掃描式電子顯微鏡 31
3-3-4 能量射散光譜儀 32
3-4 熱性質分析 32
3-4-1示差掃描熱分析儀 32
3-5 機械性質分析 32
3-5-1 壓縮測試 32
第四章 結果與討論 45
4-1 基材性質 45
4-1-1 X光繞射分析-鈦基金屬玻璃粉體 45
4-1-2 SEM觀察 45
4-1-3 熱性質分析 46
4-2 鈦基金屬玻璃多孔材 46
4-2-1 鈦基金屬玻璃多孔材外觀 47
4-2-2 鈦基金屬玻璃多孔材密度 46
4-2-3孔隙率 47
4-2-4 X光繞射分析 48
4-2-5 SEM觀察 49
4-2-6機械性質分析-壓縮測試 49
第五章 結論 63
第六章 參考文獻 64
參考文獻 [1]. A.C. Lund and C. A. Schuh, “Topological and chemical arrangement of binary alloys during severe deformation”, Journal of Applied Physics, vol. 95 , 2004, pp.4815-4822.
[2]. P. K. Bhoyar and Dr.A.B. Borade “Advance biocompatibility material for implant”, Journal of Materials Science and Engineering., vol. 1 Issue: 3, pp.145-199.
[3]. J. J. Oak , D. V. Louzguine-Luzgin and A. Inoue, “Fabrication of Ni-free Ti-based bulk-metallic glassy alloy having potential for application as biomaterial, and investigation of its mechanical properties, corrosion, and crystallization behavior”, Journal of Materials Research, vol. 22, Issue 5, 2007, pp1346-1353.
[4]. J. J. Oak and A. Inoue, “Attempt to develop Ti-based amorphous alloys for biomaterials”, Materials Science and Engineering , A 449-451, (2007), pp. 220–224.
[5]. Z.Y. Suo, S.W. Liu, L. Zhang, H. L. Gao, H. Y. Zhang and K. Q. Qiu, “Porous Bulk Metallic Glass Fabricated by Powder Consolidation”, Journal of Minerals & Materials Characterization & Engineering, vol. 7, No.2, 2008, pp 97-104.
[6]. G.S. Steinemann, S.M. Perren, G. L‥utjering, U. Zwicker and W. Bunk (Eds.), “Corrosion of titanium and titanium alloys for surgical implants” Ti , 84 Science and Technology, 1984, pp. 1327-1334.
[7]. G.S. Steinemann, in: G.D. Winter, J.L. Leray and K.E. de Goot (Eds.), “Corrosion of surgical implants in vivo and in vitro tests”, Evaluation of Biomaterials, Wiley, New York, 1980, pp. 1-13.
[8]. M. Niinomi, Metals for Biomedical Devices, CRC Press, 2010.
[9]. C. Leyens and M. Peters (Eds.), Titanium and Titanium Alloys: Fundamentals and Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2003.
[10]. B. Basu, D. Katti and A. Kumar (Eds.), Advanced Biomaterials — Fundamentals, Processing and Applications, Wiley, 2009.
[11]. M. Geetha, A.K. Singh, R. Asokamani and A.K. Gogia, Prog. “Ti based biomaterials, the ultimate choice for orthopaedic implants-A review”, Materials Science. vol. 54, 2009, pp. 397–425.
[12]. M. Long and H.J. Rack, “Titanium Alloys in Total Joint Replacement-A Materials Science Perspective’’, Biomaterials,19, 1998, pp.1621–1639.
[13]. M. Nicoara, A. Raduta, R. Parthiban, C. Locovei, J. Eckert and M. Stoica, “Low Young’s modulus Ti-based porous bulk glassy alloy without cytotoxic elements”, Acta Biomaterialia, vol. 36, 2016, pp.321-331.
[14]. C.H. Huang, Y.S. Huang, Y.S. Lin, C.H. Lin, J.C. Huang, C.H. Chen, J.B. Li, Y.H. Chen and J.S.C. Jang, “Electrochemical and biocompatibility response of newly developed”, Materials Science and Engineering., C 43, 2014, pp.343-349.
[15]. J.B. Li, H.C. Lin, J.S.C. Jang, C.N. Kuo, Y.H. Chen and J.C. Huang, “Novel open-cell bulk metallic glass foams with promising characteristic”, Materials Letters, 105,2013, pp.140-143.
[16]. A. Brenner, “Electrodeposition of Alloys’’, vol. 1 and 2 Academic Press, 1963.
[17]. W. Klement, R.H. Willens, and P. Duwez, “Non-crystalline Structure in solidified Gold-Silicon alloys,” Nature, vol. 187, 1960, pp.869-870.
[18]. H.S. Chen and C.E. Miller, “A rapid quenching technique for the preparation of thin uniform films of amorphous solids”, Review of Scientific Instruments, vol. 41, 1970, pp.1237-1238.
[19]. 吳學陞,工業材料,149, 1999, pp.154.
[20]. C.C. Koch, O.B. Cavin, C.G. McKamey, and J.O. Scarbrough, “Preparation of amorphous Ni60Nb40 by mechanical alloying”, Applied Physics Letters, vol. 43, 1983, pp.1017-1019.
[21]. A. Inoue and K. Hashimoto, “Amorphous and Nanocrystalline Materials”, Springer, 1995, pp.7.
[22]. A. Inoue, “Buck amophous alloys with soft and hard magnetic properties”, Materials Science and Engineering., vol.226-228, 1997, pp.357-363.
[23]. A. Inoue, A. Kato, T. Zhang, S. G. Kim and T. Masumoto, “Mg-Cu-Y Amorphous Alloys with High Mechanical Strengths Produced by a Metallic Mold Casting Method’’, Materials Transactions JIM, vol. 32, 1991, pp.609-616.
[24]. A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto, “Mg-Cu-Y Bulk Amorphous Alloys with High Tensile Strength Produced by a High-Pressure Die Casting Method’’, Materials Transactions JIM, 33, 1992, pp.937-945.
[25]. A. Inoue and T. Wada, “Fabrication, Thermal Stability and Mechanical Properties of Porous Bulk Glassy Pd-Cu-Ni-P Alloys’’, Materials Transactions, vol. 44, No. 10, 2003, pp. 2228-2231.
[26]. A. Inoue, “Bulk amorphous alloys with soft and hard magnetic properties”, Materials Science and Engineering, vol. 226-228, 1997, pp.357-363.
[27]. A. Inoue, “High strength bulk amorphous alloys with low critical cooling rates”, Materials Transactions JIM, vol. 36, 1995, pp.866-875.
[28]. A. Inoue, T. Zhang and A. Takeuchi, “Ferrous and nonferrous bulk amorphous alloys”, Materials Science Forum, vol. 269-272, 1998, pp.855-864.
[29]. A. Inoue, A. Takeuchi and T. Zhang, “Ferromagnetic bulk amorphous alloys”, Metallurgical and Materials Transactions, vol. 29, 1998, pp.1779-1793.
[30]. R.E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles 3rd Edition, PWS-KENT Publishing Company, Boston, 1994.
[31]. D.R. Gaskell, Introduction to the Thermodynamics of Materials 4th Edition, Taylor & Francis, US, 2009.
[32]. R. W. Cahn, P. Hassen and E. J. Kramer(ed), Materials Science and Technology, vol.9, New York, USA, 1991.
[33]. K. L. Chapra, Thin Film Phenomena, McGraw-Hill, 1969.
[34]. W. Paul and R. J. Temkin, “Amorphous germanium I. A model for the structural and optical properties ”, Advance Physical., 1973, pp.531-580.
[35]. B. Li, N. Nordstrom and E. J. Lavernia, “Spray forming of Zircaloy-4”, Materials Science Engineering., A 237, 1997, pp.207-215.
[36]. R. Liu, J. Li, K. Dong, C. Zheng and H. Liu, “First synthesis of vanadium oxide thin films by spray pyrolysis technique” Materials Science Engineering., B 94, 2002, pp.141-147.
[37]. P. S. Grant, “Spray forming”, Progress in Materials Science, vol. 39, 1995, pp.497-545.
[38]. C. R. M. Afonso, C. Bolfarini, C. S. Kiminami, N. D. Bassim, M. J. Kaufman, M. F. Amateau, T. J. Eden and J. M. Galbraith, J. M. Galbraith, “Amorphous phase formation during spray forming of Al84Y3Ni8Co4Zr1” Non-Cryst. Solids, vol.284, 2001, p.134-138.
[39]. K.L. Chopra, “Thin Film Phenomena”, McGraw-Hill, 1969.
[40]. R. W. Cahn, P. Hassen and E. J. Kramer(ed), Materials Science and Technology, vol. 9, New York, USA, 1991.
[41]. A. Inoue, N. Nishiyama and H.M. Kimura, “Preparation and Thermal Stability of Bulk Amorphous Pd40Cu30Ni10P20 Alloy Cylinder of 72 mm in Diameter”, Materials Transactions JIM, vol. 38, 1997, pp.179-183.
[42]. A. Inoue, N. Nishiyama, H.M. Kimura, “Preparation and Thermal Stability of Bulk Amorphous Pd40Cu30Ni10P20 Alloy Cylinder of 72 mm in Diameter”, Materials Transactions JIM, vol. 38, 1997, pp.179-183
[43]. A. Inoue, “Bulk amorphous and nanocrystalline alloys with high functional properties”. Materials Science., vol.304-306, 2001, pp.1-10.
[44]. A.Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta Materialia, vol. 48, 2000, pp.279-306
[45]. J.S.C. Jang, I.H. Wang, L.J. Chang, G.J. Chen, T.H. Hung and J.C. Huang, “Crystallization kinetics and thermal stability of the Zr60Al7.5Cu17.5Ni10Si4B1 amorphous alloy studied by isothermal differential scanning calorimetry and transmission electron microscopy”, Materials Science and Engineering. A, vol. 449-451, 2007, pp.511-516.
[46]. T.A. Waniuk, J. Schroers and W.L. Johnson, “Critical cooling rate and thermal stability of Zr-Ti-Cu-Ni-Be alloys”, Applied Physics Letters, vol. 78, 2001, pp.1213-1215.
[47]. A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, “High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems”, Acta Materialia, vol. 49, 2001, pp.2645-2652.
[48]. A. Inoue, “Stabilization of Metallic Super Cooled Liquid and Bulk Amorphous Alloys”, Acta Materials, vol. 48, 2000, pp.279-306.
[49]. 鄭振東,非晶質金屬漫談,建宏出版社,1990.
[50]. A. Inoue and A. Takeuchi, “Recent development and application products of bulk glassy alloys”, Acta Materialia, vol. 59, 2011, pp.2243-2267.
[51]. C.L. Qiu, L. Liu, M. Sun and S.M. Zhang, “The effect of Nb addition on mechanical properties, corrosion behavior, and metal-ion release of Zr-Al-Cu-Ni bulk metallic glasses in artificial body fluid”, Journal of Biomedical Materials Research, vol. 75, 2005, pp.950-956.
[52]. A. Inoue, B.L. Shen, A.R. Yavari and A.L. Greer, “Mechanical properties of Fe-based bulk glassy alloys in Fe–B–Si–Nb and Fe–Ga–P–C–B–Si systems”, Journal of Materials Research, vol. 18, 2003, pp.1478-1492.
[53]. S. R. Elliot, “Physics of Amorphous Materials’’, USA, 1990.
[54]. International Organization for Standardization, “ISO-10993: Biological Evaluation of Medical Devices ’’, 3rd, 2003.
[55]. R. Zallen, “The Physics of Amorphous Solids’’, A Wiley-Interscience, Canada,1983.
[56]. A. Inoue, K. Nakazato, Y. Kawamura, A. P. Tsai and T. Masumoto, “Effect of Cu or Ag on the Formation of Coexistent Nanoscale Al Particles in Al-Ni-M-Ce (M=Cu or Ag) Amorphous Alloys”, Materials Transactions JIM, vol. 35, 1994, pp.95-102.
[57]. J.B. Li, H.C. Lin, J.S.C. Jang, C.N. Kuo and J.C. Huang, “Novel open-cell bulk metallic glass foams with promising characteristics”, Materials Letters vol. 105, 2013, pp.140-143.
[58]. A.G. Evans, J.W. Hutchinson and M.F. Ashby, “Multifunctionality of cellular metal systems”, Progress in Materials Science, vol. 43, 1999, pp.171-221.
[59]. H.C. Lin, P.H. Tsai, J.H. Ke, J.B. Li, J.S.C. Jang, C.H. Huang and J.C. Huang, “Design a toxic-element-free Ti-based amorphous alloy with remarkable supercooled liquid region for biomedical application”, Journal, intermetallic 55, 2014, pp.22-27.
指導教授 鄭憲清(Shian-Ching Jang) 審核日期 2018-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明