摘要(英) |
The modified A2O activated sludge treatment system removes carbon, nitrogen and phosphorus from water by microbial action to meet the flow standard. Generally, the A2O wastewater treatment system is a semi-open system, and changes in the external environment will affect the water quality characteristics of the sewage, thereby affecting the treatment efficiency. Failure to properly control the water quality in a timely manner may result in deterioration of the outflow water quality. This study uses the concept of system dynamics to analyze the reaction mechanism between various substances and microorganisms in the system, and based on this, develops and establishes the dynamic mode of the aerobic tank and membrane filter system of the modified A2O system. At the same time, the rate of microbial reaction in the model is estimated by using artificial neural network. Compare the simulation results with the actual outflow water quality data, the relative error between the simulation results of MLSS, ammonia nitrogen, nitrate nitrogen and orthophosphate is 3.57%~196.65%, and the absolute error is less than 8.1919mg/L, which is an allowable error range. This result indicates that the model can effectively estimate the concentration of the substance. The absolute error of the simulated concentration and actual concentration of SCOD is 24.07 mg/L, and the simulation results are not as good as other water quality project estimation results, which may be caused by the gradual accumulation of errors in the SCOD estimation results in a single tank. When the data of the second experiment is used for simulation, the error between the simulation result and the actual data increases. Comparing the two experimental data, although the influent water quality has changed, it is oscillated around the first batch of experimental data. Therefore, the judgment caused the error because the system phase changes. |
參考文獻 |
[1] L. X. Wang, J. M. Mendel, “Fuzzy basis functions, universal approximation, and orthogonal least-squares learning” IEEE transactions on Neural Networks, 3(5), 807-814, 1992.
[2] J. F. Andrews, “Dynamic control of wastewater treatment plants” Environmental science & technology, 28(9), 434A-440A, 1994.
[3] M. Sanchez–Marre, U. Cortes, I. R–Roda, M. Poch, J. Lafuente, “Learning and Adaptation in Wastewater Treatment Plants Through Case–Based Reasoning” Computer?Aided Civil and Infrastructure Engineering, 12(4), 251-266, 1997.
[4] A. Stephanie, “Building a System Dynamics Model Part 1: Conceptualizatio” 1997.
[5] J. H. Tay, X. Zhang, “Neural fuzzy modeling of anaerobic biological wastewater treatment systems” WIT Transactions on Ecology and the Environment, 32, 1998.
[6] M. F. Hamoda, I. A. Al-Ghusain, A. H. Hassan, “Integrated wastewater treatment plant performance evaluation using artificial neural networks” Water Science and Technology, 40(7), 55-65, 1999.
[7] D. S. Lee, J. M. Park, “Neural network modeling for on-line estimation of nutrient dynamics in a sequentially-operated batch reactor” Journal of Biotechnology, 75(2-3), 229-239, 1999.
[8] J. D. Sterman, “Business dynamics: systems thinking and modeling for a complex world”, 2000.
[9] J. Comas, S. Dzeroski, M. Sanchez-Marre, “Applying Machine Learning Methods to Wastewater Treatment Plant Data”, 2000.
[10] M. Henze, W. Gujer, T. Mino, M. C. M. Van Loosdrecht, “Activated sludge models ASM1, ASM2, ASM2d and ASM3” IWA publishing, 2000.
[11] J. Comas, S. Dzeroski, K. Gibert, I. R?Roda, M. Sanchez?Marre, “Knowledge discovery by means of inductive methods in wastewater treatment plant data” AI communications, 14(1), 45-62, 2001.
[12] D. J. Choi, H. Park, “A hybrid artificial neural network as a software sensor for optimal control of a wastewater treatment process” Water research, 35(16), 3959-3967, 2001.
[13] A. Ligeza, “Logical Foundations for Rule-based Systems” Studies in Computational Intelligence 11, Berlin: Springer, 2006.
[14] B. Raduly, K. V. Gernaey, A. G. Capodaglio, P. S. Mikkelsen, M. Henze, “Artificial neural networks for rapid WWTP performance evaluation: Methodology and case study” Environmental Modelling & Software, 22(8), 1208-1216, 2007.
[15] B. O. Palsson, “Systems biology: simulation of dynamic network states” Cambridge University Press, 2011.
[16] K. V. Gernaey, X. Flores-Alsina, C. Rosen, L. Benedetti, U. Jeppsson, “Dynamic influent pollutant disturbance scenario generation using a phenomenological modelling approach” Environmental Modelling & Software, 26(11), 1255-1267, 2011.
[17] L. Amand, G. Olsson, B. Carlsson, “Aeration control–a review” Water Science and Technology, 67(11), 2374-2398, 2013.
[18] L. Benedetti, J. Langeveld, A. Comeau, L. Corominas, G. Daigger, C. Martin, P. A. Vanrolleghem, “Modelling and monitoring of integrated urban wastewater systems: review on status and perspectives” Water Science and Technology, 68(6), 1203-1215, 2013.
[19] S. Park, B. J. Kim, S. Y. Jung, “Simulation methods of a system dynamics model for efficient operations and planning of capacity expansion of activated-sludge wastewater treatment plants” Procedia Engineering, 70, 1289-1295, 2014.
[20] M. Von Sperling, “Activated sludge and aerobic biofilm reactors” IWA publishing, 2017.
[21] 黃富昌,陳合貴,鄭德隆,黃威展,李紹基,「生物法去除氮, 磷技術之回顧」,南亞學報第二十期,91~110頁,2000
[22] 商敏兒,杜樹新,「活性污泥法汙水處理過程自動控制的研究現狀」,環境污染治理技術與設備, 83~87頁,2002
[23] 高大文,彭永臻,王淑瑩,高景峰,「污水處理智慧控制的研究, 應用與發展」,中國給水排水,35~39頁,2002
[24] 白子易,蔡勇斌,莊順興,呂鴻光,歐陽嶠暉,「BNR活性污泥程序二階段硝化模式 (台灣活性污泥模式TWEA1) 之發展」,第十三屆下水道與水環境再生研討會論文集,2003
[25] 尤世雄,「CFSBR 水質推估公式之發展與建立」,中央大學環境工程研究所學位論文,1~115頁,2006
[26] 楊朝仲,系統動力學: 思維與應用,五南,2007
[27] 陳信豪,「應用廢水水質自動監測系統於污水處理廠操控之研究」,中央大學環境工程研究所碩士在職專班學位論文,1~90頁,2007
[28] 屠益民,張良政,系統動力學: 理論與應用,智勝文化事業有限公司,2010
[29] 謝邦昌,邱志洲,類神經網路分析 (Neural Network Analysis),2010
[30] 羅華強,類神經網路: MATLAB 的應用,高立,2011
[31] 陳政傑,「利用系統動力模式建立 CFSBR 即時自動操作與控制策略之研究」,中央大學環境工程研究所學位論文,1~136頁,2014
[32] 陳政廷,「連續流循序批分式活性污泥自動控制系統之建立」,中央大學環境工程研究所學位論文,1~80頁,2015 |