參考文獻 |
[1] Bette Bultena and Frank Ruskey,“Transition Restricted Gray Codes”, the Electronic Journal of Combinatorics:Volume 3,Paper R11.March 14,1996
[2] Chang-Hsing Tsai, Jimmy J. M. Tan, Tyne Liang, and Lih-Hsing Hsu,” Fault – Tolerant Hamiltonian Laceablility of Hypercubes,”preprint.
[3] Douglas B. West, “Introduction to Graph Theory” Second edition: Prentice Hall 2001
[4] Friedhelm Meyer auf der Heide and Berthold VÖcking ,” Short paths routing in arbitrary networks”, Journal of Algorithms, Vol. 31, No. 1, pp. 105-131, 1999.
[5] G. A. Miller, Blichfeldt and Dickson ,” Theory and Applications of Finite Groups “, John Wiley and sons,Inc.,1916,reprinted Dover 1961
[6] G.Simmons,”Almost all n-dimensional rectangular lattices are Hamiltonian laceable”,Congressus Numerantium 21,1978,pp.103-108.
[7] Harry Dweighter,” Problem E2569”,American Mathematical Monthly,82 (1975) 1010.
[8] H.S.M. Coxeter, “Zero-Symmetric Graphs Trivalent Graphical Regular Representations of Groups.” Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London (1981)
[9] K. Menger, “Zur allgemeinen Kurventheroie”, Fund. Math., 10, 1927, 95-115
[10] Leighton,F.T., “Introduction to Parallel Algorithms and Architectures : Arrays,Trees,Hypercubes.” ,Morgan Kaufmann Publishers, Inc.,(1992)
[11] Marie-Claude Heydemann and Bertrand Ducourthial, “Cayley Graphs And Interconnection Networks” in Graph Symmetry, Algebraic Methods and Applications, "NATO ASI C", vol. 497 , p 167-226, 1997.
[12] Michael Albert, R. E. L. Aldred and Derek Holton,”On 3*-connected graphs”preprint.
[13] S.B. Akers and B. Krishnamurthy, “A Group Theoretic Model for Symmetric Interconnection Networks”, IEEE Transaction on Computer, Vol. c-38, No. 4, April 1989, pp. 555-566
[14] Shahram. Latifi,Pradip K,Srimani,”SEP:A Fixed Degree Regular Network for Msaaively Parallel Systems.” preprint.
[15] Shahram Latifi and Pradip Srimani,” A New Fixed Degree Regular Network for Parallel Processing,” Proceedings of Eighth IEEE Symposium on Parallel and Distributed Processing, October 1996.
[16] Preparata, F. P. and Vuillemin, J. : “The Cube-Connected Cycle : A Versatile
Network for Parallel Computation.” Communication of ACM Vol.24 No5,1987,p300-309
[17] 林政寬,n階置換Cayley圖之研究, 中央大學數學研究所碩士論文,preprint.
[18] 徐嘉陽, 特殊Cayley 圖的寬距, 中央大學數學研究所碩士論文(1994)
[19] 雷偉明, Cayley 圖的直徑與寬直徑的研究, 中央大學數學研究所碩士論文(1996) 23 |