博碩士論文 89322110 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.145.91.152
姓名 蘇銘鴻(Ming-Hong Su)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 電滲法運用於抑制鹼質與粒料反應之基礎研究
相關論文
★ 水泥製程於資源再利用之研究★ 焚化底渣水洗前處理及應用之探討
★ 鈦鐵礦氯化爐碴應用於道路基底層及礦尾渣水洗前處理之研究★ 水洗礦尾渣造粒後之粒料特性探討
★ 水洗礦尾渣取代水泥製品中細粒料之可行性研究★ 陶瓷業無機性污泥資源化用於人工細粒料及自充填混凝土之研究
★ 磚製品中摻配鈦砂之較佳配比研究★ 單維電化學傳輸陽離子技術抑制混凝土ASR之研究
★ 不同醇類製備聚丙烯酸酯應用於水泥基材的行為研究★ 人工粒料作為路基材料及CLSM對RC構件和金屬腐蝕之影響研究
★ 經高溫製程產生含矽再生粒料之鹼質活性研究★ 改質人工粒料的應用策略基礎研究
★ 爐碴作為混凝土細粒料的膨脹安定化方法及檢測技術研究★ 鎂鋁氧化物及類水滑石對氯離子吸附行為之研究
★ 以CFB副產石灰作為水淬爐石粉激發劑之可行性探討★ 加速鋰離子傳輸技術中不同電極間距對離子傳輸行為的影響研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要利用電化學技術,在電場作用下快速將鋰離子送進具有鹼質與粒料膨脹反應潛勢的混凝土試體內,同時將試體內的鈉、鉀離子驅趕出試體,探討通電試體對抑制鹼質與粒料反應的成效,以作為日後能應用於實務上之基礎研究。本試驗的通電模式主要模擬ASTM C1202的試驗程序,在固定通電條件下,針對不同混凝土配比條件(包括水灰比、含鹼當量及粒料活性)、試體長徑比、電流密度、陽極電解液種類及試體齡期等參數變化,一一探討其對通電成效的影響。
研究結果顯示,在電場作用下,可快速的將鋰離子送進混凝土試體內,亦可將大部份的游離態鈉離子驅趕出試體。另外分析通電結果,試驗所探討的各項參數皆明顯影響通電的效果。但由於通電過程中,氫氧化鈣於孔隙溶液中大量沉澱,導致混凝土阻抗增加,因此隨著通電時間的增加,通電的效果越差。不過就整體而言,可預期經過通電處理的混凝土試體對抑制鹼質與粒料反應有一定程度的效果。
摘要(英) The purpose of this research is to drive lithium ions quickly into the concrete specimens and remove sodium ions and potassium ions form the concrete specimens at the same time under the influence of an externally applied electrical field. The main discussion is about the inhibiting effect of alkali aggregate reaction after concrete specimens were subjected to an electrochemical technique treatment. The experimental procedure is principally to simulate ASTM C1202. In this study, five main influence factors are investigated: different of concrete mix design, dimensions of concrete specimens, current density, the combination type of electrolyte and curing period of concrete specimens.
Results showed that this test utilized a applied potential difference (9 A/m2 current density)can accelerate the transport of lithium ions into or through concrete specimens. Moreover, almost all of free sodium ions were driven out from concrete specimens. Due to a large amount of Ca(OH)2 precipitated during electric treatment, which may have caused its increased resistance to molecular or ions transport. Therefore, the effect of ions transport was getting worse after a time. Overall, it is predicted that concrete specimens treated will inhibit alkali aggregate reaction effectively.
關鍵字(中) ★ 電滲法
★ 鹼質與粒料反應
★ 鋰離子
★ 電流密度
關鍵字(英)
論文目次 第一章 緒論……………………………………………………………..1
1-1 研究源起與動機……………………………………………….....1
1-2 研究目的………………………………………………………….2
第二章 文獻回顧………………………………………………………..3
2-1 鹼質與粒料反應的種類……………………………………...…..3
2-1-1 鹼-氧化矽反應……………………………………………....3
2-1-2 鹼-碳酸鹽反應…………………………………………..…..4
2-1-3 鹼-矽酸鹽反應……………………………………………....4
2-2 鹼質與粒料反應的機理…………………………………...……..5
2-2-1 鹼質與粒料反應條件……………………………………….5
2-2-2 活性粒料的特性…………………………………………….5
2-2-3 有關鹼質與粒料反應機理之學說………………………….6
2-2-4 鹼質與粒料反應的過程…………………………………….7
2-3 鹼質與粒料反應的徵候………………………………………...10
2-3-1 混凝土構造物外觀徵候…………………………………....10
2-3-2 混凝土構造物內部徵候……………………………………11
2-4 影響鹼質與粒料反應的因素…………………………………...13
2-5 新拌混凝土的預防方法………………………………………...16
2-6 硬固混凝土傳統維修方法……………………………………...17
2-7 鹼質與粒料反應抑制劑發展歷程…………………………...…18
2-8 鋰離子抑制鹼質與粒料反應機理…………………..….………22
2-9 電化學技術用於維修硬固混凝土…………………………...…23
2-9-1電化學去鹽工法……………………………………….……23
2-9-2電化學還鹼工法………………………………………….....23
2-9-3 電化學去鹽與還鹼工法的其它效應……………………...24
2-10 電滲法運用於快速氯離子滲透試験方法介紹……………...25
2-10-1 快速氯離子滲透性試驗(ASTM C1202)………………...25
2-10-2 其它電滲方法的發展…………………………..………..26
2-10-3 影響離子移動的因素……………………….……….…...30
第三章 試驗計畫………………………………………………………32
3-1 試驗材料…………………………………………………...……32
3-1-1 水泥………………………………………………………...32
3-1-2 粒料……………………………….………………………..33
3-1-3 拌合水……………………………….……………………..33
3-1-4 摻料…………………………………………………….…..33
3-1-5 電解液………………………………………………….…..34
3-2 試驗規畫…………………………………………………...……35
3-2-1 試驗流程………………………………………….………..35
3-2-2 配比設計……………………………………………….…..35
3-3 試驗儀器設備………………………………………………...…39
3-3-1 粒料處理…………………………………………………...39
3-3-2 試體製拌…………………………………………………...40
3-3-3 試體養護…………………………………………………...42
3-3-4 圓柱試體抗壓試驗………………………………………...42
3-3-5 試體切割…………………………………………………...43
3-3-6 試體前處理………………………………………………...44
3-3-7 通電設備…………………………………………………...49
3-3-8 電解液離子濃度監測……………………………………...50
3-3-9 試體內離子成份分析……………………………………...53
3-3-10 膨脹量變化量測…………………………………….……55
3-3-11掃瞄式電子顯微鏡………………………………….…….56
3-3-12 能量分散光譜儀………………………………….………57
3-3-13 X光繞射分析儀…………………………………….…….57
3-3-13壓孔式孔隙分析儀…………………………….………….58
3-4 初步試驗……………………………………………………...…59
3-4-1 試驗設計與配比…………………………………………...59
3-4-2 材料級配…………………………………………………...59
3-4-3 試驗方法…………………………………………………...59
3-4-4 初步試驗結果………………………………………….…..61
第四章 分析與討論……………………………………………………62
4-1 圓柱試體抗壓強度…………………………………………...…62
4-1-1 含鹼當量對抗壓強度的影響……………………….….….63
4-1-2 粒料活性對抗壓強度的影響……………………………...64
4-1-3 水灰比對抗壓強度的影響………………………………...65
4-2 配比變化對通電成效的影響……………………………...……66
4-2-2 配比變化之鋰離子的移動情況…………………………...66
4-2-2-1 配比變化之鋰離子通過試體時間…………………....67
4-2-2-1-1 含鹼當量對鋰離子通過試體時間的影響…….…67
4-2-2-1-2 粒料活性對鋰離子通過試體時間的影響…….…68
4-2-2-1-3 水灰比對鋰離子通過試體時間的影響……….…69
4-2-2-2 配比變化之陽極槽鋰離子的減少量……………..…..69
4-2-2-2-1 含鹼當量對陽極槽鋰離子減少量的影響……….71
4-2-2-2-2 粒料活性對陽極槽鋰離子減少量的影響……….72
4-2-2-2-3 水灰比對陽極槽鋰離子減少量的影響………….74
4-2-2-3 配比變化之陰極槽鋰離子的增加量………………....75
4-2-2-3-1 含鹼當量對陰極槽鋰離子增加量的影響…….…77
4-2-2-3-2 粒料活性對陰極槽鋰離子增加量的影響…….…82
4-2-2-3-3 水灰比對陰極槽鋰離子增加量的影響……….…86
4-2-2-4 配比變化之試體內鋰離子的分佈與含量………..…..89
4-2-2-4-1 含鹼當量對試體內鋰離子分佈的影響………….90
4-2-2-4-2 粒料活性對試體內鋰離子分佈的影響……….…95
4-2-2-4-3 水灰比對試體內鋰離子分佈的影響…………...100
4-2-2-4-4 配比變化之鋰離子移動綜合討論…………..….103
4-2-3 配比變化之鈉離子移動情況……………………….…....103
4-2-3-1 配比變化之陰極槽鈉離子移出量………………..…105
4-2-3-1-1 含鹼當量對陰極槽鈉離子移出量的影響……...105
4-2-3-1-2 粒料活性對陰極槽鈉離子移出量的影響……...110
4-2-3-1-3 水灰比對陰極槽鈉離子移出量的影響………...114
4-2-3-2 配比變化之試體內鈉離子的分佈與含量………..…118
4-2-3-2-1 含鹼當量對試體內鈉離子分布與含量的影響...119
4-2-3-2-2 不同粒料活性或水灰比試體內鈉離子的分布與含量………………………………………..…..122
4-2-3-2-3 配比變化之鈉離子綜合討論………………..….122
4-2-4 配比變化之鈣離子移動情況………………………...…..123
4-2-4-1 配比變化之陰極槽鈣離子的變化趨勢…………..…123
4-2-4-2 配比變化之試體內鈣離子的分佈與含量………..…125
4-2-5 鉀離子的移動情況…………………………………..…...126
4-2-6 試體內氫氧根離子的分佈…………………………….....126
4-2-7 通電過程電壓變化…………………………………….....127
4-2-8 通電過程溫度變化…………………………………..…...130
4-2-9 微觀分析……………………………………………...…130
4-2-9-1 XRD…………………………………………………...130
4-2-9-2 SEM(EDS)…….………………………………….….134
4-2-9-3 MIP…………………………………………………....136
4-2-10 長度量測………………………..…………………….…..136
4-3 長徑比變化對通電成效的影響……………………………....138
4-3-1 長徑比變化之鋰離子移動情況…………………….……138
4-3-1-1 長徑比變化對鋰離子通過試體時間的影響………..139
4-3-1-2 長徑比變化對陰極槽鋰離子增加量的影響………..139
4-3-1-3 長徑比變化之試體內鋰離子的分佈與含量………..140
4-3-2 長徑比變化之鈉離子移動情況………………….………141
4-3-2-1 長徑比變化對陰極槽鈉離子移出量的影響……….142
4-3-2-2 長徑比變化之試體內鈉離子的分佈與含量………..143
4-3-2-3 長徑比變化之綜合討論……………………………..144
4-3-3 長徑比變化之鈣離子移動情況…………………….……145
4-4 電流密度變化對通電成效的影響………………………..…..145
4-4-1 電流密度變化之鋰離子的移動情況………………….…145
4-4-1-1 電流密度變化對鋰離子通過試體時間的影響……..146
4-4-1-2 電流密度變化對陰極槽鋰離子增加量的影響……..146
4-4-1-3 電流密度變化之試體內鋰離子的分佈與含量……..147
4-4-2 電流密度變化之鈉離子移動情況……………….………148
4-4-2-1 電流密度變化對陰極槽鈉離子移出量的影響……..149
4-4-2-2 電流密度變化之試體內鈉離子的分佈與含量……..150
4-4-2-3 電流密度變化之綜合討論…………………………..150
4-5 陽極槽電解液變化對通電成效的影響…………………..…..151
4-5-1 陽極槽電解液變化之鋰離子的移動情況……………….151
4-5-1-1 陽極槽電解液變化對鋰離子通過試體時間的影響..152
4-5-1-2 陽極槽電解液變化對陰極槽鋰離子增加量的影響..152
4-5-1-3 陽極槽電解液變化之試體內鋰離子的分佈與含量..153
4-5-2 陽極槽電解液變化之鈉離子的移動情況………………154
4-5-2-1 陽極槽電解液變化對陰極槽鈉離子移出量的影響.155
4-5-2-2 陽極槽電解液變化之試體內鈉離子的分佈與含量.155
4-5-2-3 陽極槽電解液變化之綜合討論…………………….156
4-6 試體齡期變化對通電成效的影響…………………..………..157
4-6-1 試體齡期變化之鋰離子的移動情況……………….……157
4-6-1-1 試體齡期變化對鋰離子通過試體時間的影響……..157
4-6-1-2 試體齡期變化對陰極槽鋰離子增加量的影響……..158
4-6-1-3 試體齡期變化之試體內鋰離子的分佈與含量……..159
4-6-2 試體齡期變化之鈉離子移動情況…………………….…160
4-6-2-1 試體齡期變化對陰極槽鈉離子移出量的影響……..160
4-6-2-2 試體齡期變化之試體內鈉離子的分佈與含量……..161
4-6-3 試體齡期變化之綜和討論……………………………….162
第五章 結論與建議…………………………………………………..163
5-1 結論……………………………………………………...……..163
5-2 建議………………………………………………………...…..164
參考文獻………………………………………………………………165
參考文獻 1. Hobbs, D.W., “Alkali-Silica Reaction in Concrete,” Thomas Telford, London, 1988.
2. Mehta, P.K., “Effect of Chemical Additions on the Alkali-Silica Expansion,” University of California, Berkeley, USA, pp. 229~234, 1978.
3. Stanton, T.E., “Expansion of Concrete Through Reaction Between Cement and Aggregate,” Proc. ASCE, Vol. 66, 1940.
4. Gillott, J.E. et al., “Alkali Aggregate Reaction in Nova Scotia Ⅳ,Character of the Reaction,” Cement and Concrete Research, Vol. 3, No. 5, pp. 521~535, 1973.
5. Fournier, B., and Bérubé, M.A., “Alkali-Aggregate Reaction in Concrete: A Review of Basic Concepts and Engineering Implications,” Canadian Journal of Civil Engineering, Vol. 27, pp. 167~191. No. 2, 2000.
6. 李 釗、陳桂清、許書王,「花蓮港區混凝土構造物鹼質與粒料反應之調查研究」,台灣省政府交通處港灣技術研究所研究報告,1998年。
7. 李 釗、柯正龍,「台中、基隆及蘇澳港區混凝土構造物鹼質與粒料反應調查與潛勢分析研究」,國立中央大學土木工程研究所碩士論文,中壢,1999年。
8. 許書王,「台灣地區鹼質與粒料反應抑制策略之研究」,國立中央大學土木工程研究所博士論文,中壢,1999年。
9. Lee, C., “Available Alkalis in Fly and Their Effects on Alkali Aggregate Reaction,” PHD Dissertation, University of Iowa State, 1986.
10. Shu, Z., and Deng, M., “Alkali-Silica Reaction in the Cement Concrete Pavement of Airport,” 10th ICAAR, Australia, pp. 251~256, 1996.
11. SHRP-C-343, “Eliminating or Minimizing Alkali-Silica Reaction,” Strategic Highway Research Program, Washington, DC, pp. 107~118, 1993.
12. 李 釗,「由破裂之消波塊探討鹼骨材反應」,港灣報導,第30~40頁,1996年10月。
13. SHRP-C-342, “Alkali Silica Reactivity: An Overview of Research,” Strategic Highway Research Program, Washington, DC, 1993.
14. SHRP-C-315, “Handbook for the Identification of Alkali-Silica Reactivity in Highway Structures,” Strategic Highway Research Program, Washington, DC, 1991.
15. Blight, G.E., Alexander, M.G., Ralph, T.K., and Lewis, B.A., “Effect of Alkali-Aggregate Reaction on the Performance of a Reinforced Concrete Structure over a Six-Year Period,” Magazine of Concrete Research, Vol. 41, No. 147, pp. 69~77, 1989.
16. Bérubé, M.A., “Measurement of the Alkali Content of Concrete Using Hot-Water Extraction,” 11th ICAAR, Quebec, pp. 159~168, 2000.
17. Goguel, R., and Milestone, N., “Alkali Release from Basalts and Alkalinity of Pore Solution in Mortar,” 11th ICAAR, Quebec, pp. 179~188, 2000.
18. Shayan, A., “Where is AAR Heading after the 10th International Conference,” Cement and Concrete Composites, pp. 441~449, 1997.
19. Way, S.J., and Shayan, A., “Early Hydration of a Portland Cement in Water and Sodium Hydroxide Solutions: Composition of Solutions and Nature of Solid Phases,” Cement and Concrete Research, Vol. 19, pp. 759~769, 1989.
20. Young, J.F., and Mindess, S., “Concrete,” pp. 140~149.
21. Oberholster, R.E., Westra, W.B., “The Effectiveness of Mineral Admixtures in Reducing Expansion due to AAR and Malmesbury Group Aggregate,” Proceedings of the 5th International Conference on AAR in Concrete, Paper S252/31, Cape Town, 1981.
22. Hewlett, P.C., “Concrete Admixture Use and Application,” Longman Scientific and Technical, pp. 28~55, 85~101, 1988.
23. Qinghan, B., Nishibayashi, S., and Kuroda, T., “Various Chemicals in Suppressing Expansion Due to Alkali-Silica Reaction,” 10th ICAAR, Australia, pp. 868~875, 1996.
24. Tomasawa, F. et al., “Influence of Water Concrete of Concrete on AAR,” 8th ICAAR, Kyoto, pp. 881~885, 1989.
25. Ludwig, U., “Effect of Environmental Conditions on Alkali-Aggregate Reaction and Preventive Measures,” 8th ICAAR, Kyoto, pp. 583~596, 1989.
26. 李 釗,「國內外混凝土鹼質與粒料反應問題與防制技術研究」,混凝土結構耐久性技術,第175~201頁,2000年4月。
27. McCoy, W.J., “New Approach to Inhibiting Alkali-aggregate Expansion,” Journal of the American Concrete Institute, Vol. 47, pp. 693~706, 1951.
28. Lawrence, Y., and Vivian, H.F., “Australian Journal Applied Science,” Vol. 12, No. 96, 1961.
29. Sakaguchi, Y., “The Inhibiting Effect of Lithium Compounds on Alkali-Silica Reaction,” 8th ICAAR, Kyoto, pp.229~234, 1989.
30. David, C.S., “Lithium Salt Admixtures- An Alternative Method to Prevent Expansive Alkali-Silica Reactivity,” 9th ICAAR, London, 1992.
31. Ong, S., “Studies on Effects of Steam Curing and Alkali Hydroxide Addisions on Pore Solution Chemistry, Microstructure, and Alkali Silica Reactions,” PHD Dissertation, Purdue University, 1993.
32. Qinghan, B., “Preliminary Study of Effect of LiNO2 on Expansion of Mortars Subjected to Alkali-Silica Reaction,” Cement and concrete Research, Vol. 25, No. 8, pp. 1647~1654, 1995.
33. Lumley, J.S., “ASR Suppression by Lithium Compounds,” Cement and Concrete Research, Vol. 27, No. 2, pp. 235~244, 1997.
34. Stokes, D.B., “Use of Lithium to Combat Alkali-Silica Reactivity,” 10th ICAAR, London, pp. 862~867, 1996.
35. 李 釗、陳登義,「以電化學技術抑制鹼質與粒料反應之基礎研究」,國立中央大學土木工程研究所碩士論文,中壢,1999年。
36. Whitmore, D., and Abbott, S., “Use of Applied Electric Field to Drive Lithium Ions into Alkali-Silica Reaction Structure,” 11th ICAAR, Quebec, pp. 1089~1098, 2000.
37. 李 釗、陳桂清,「電化學技術應用於鹽害R.C.結構物之去鹽成效與鋼筋腐蝕行為研究」,國立中央大學土木工程研究所博士論文,中壢,1999年。
38. Emmanuel, E. et al., “Chloride Extraction and Realkalization of Reinforced Concrete Stop Steel Corrosion,” Journal of Performance of Constructed Facilities, Vol. 12, No. 2, pp. 77~84, 1998.
39. Buenfeld, N.R., and Broomfield J.P., “Influence of electrochemical chloride extraction on the bond between steel and concrete,” Magazine of Concrete Research, Vol. 52, No. 2, pp. 79~91, 2000.
40. Marcotte, T.D., Hansson, C.M., and Hope, B.B., “The effect of the electrochemical chloride extraction treatment on steel-reinforced mortar Part I,” Cement and concrete Research, Vol. 29, pp. 1555~1560, 1999.
41. Ihekwaba, N.M., and Hope, B.B., “Mechanical Properties of Anodic and Cathodic Regions of ECE Treated Concrete,” Cement and concrete Research, Vol. 26, No. 5, pp. 771~780, 1996.
42. ASTM C 1202-97, “Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration,” USA, 1989.
43. Dhir, R.K., ”Rapid Estimation of Chloride Diffusion Coefficient in Concrete,” Magazine of Concrete Research, Vol. 42, No. 152, pp. 177~185, 1990.
44. Luping, T., and Nilsson, L., “Rapid Determination of the Chloride Diffusivity in Concrete by Applying an Electrical Field,” ACI Materials Journal, Vol. 89, No. 1, pp. 49~53, 1992.
45. Andrade, C., “Calculation of Chloride Diffusion Coefficients in Concrete from Ionic Migration Measurements,” Cement and concrete Research, Vol. 23, pp. 724~742, 1993.
46. McGrath, P.F., and Hooton, R.D., “Influence of Voltage on Chloride Diffusion Coefficients from Chloride Migration Tests,” Cement and concrete Research, Vol. 26, No. 8, pp.1239~1244, 1996.
47. Halamickova, P., ”Water Permeability and Chloride Ion Diffusion in Portland Cement Mortars: Relationship to Sand Content and Critical Pore Diameter,” Cement and Concrete Research,” Vol. 25, No. 4, pp. 790~802, 1995.
48. Zhang, T. and Odd, E., “An Electrochemical Method for Accelerated Testing of Chloride Diffusivity in Concrete,” Cement and Concrete Research,” Vol. 24, No. 8, pp. 1534~1548, 1994.
49. Streicher, P.E., “A Chloride Conduction Test for Concrete,” Cement and Concrete Research,” Vol. 25, No. 6, pp. 1284~1294, 1995.
50. 楊仲家、黃 然、江明鴻,「混凝土氯離子滲透行為及腐蝕特性之研究」,國立海洋大學材料工程研究所碩士論文,基隆,2000年。
51. Delagrave, A., “Prediction of Diffusion Coefficients in Cement-Based Materials on the Basis of Migration Experiments,” Cement and Concrete Research, Vol. 26, No. 12, pp. 1831~1842, 1996.
52. Garboczi, E.J., Cement and Concrete Research, Vol. 20, No. 3, pp, 443, 1994.
53. Luping, T., “Chloride Binding Capacity and Binding Isotherms of OPC Pastes and Mortars,” Cement and Concrete Research. Vol. 23, pp. 247~253, 1993.
54. Page, C.L., Short, N.R., and El Tarras, A., “Diffusion of Chloride Ions in Hardened Cement Paste,” Cement and Concrete Research, Vol. 11, No. 3, 395~406. 1981.
55. ASTM C150-97a, “Standard Specification for Portland Cement,” American Society for Testing and Materials, Philadelphia, USA, 1998.
56. ASTM C289-94, “Standard Test Method for Potential Alkali Silica Reactivity of Aggregates (Chemical Method),” American Society for Testing and Materials, Philadelphia, USA, 1998.
57. ASTM C227-97a, “Standard Test Method for Potential Alkali Reactivity of Cement-Aggregate Combinations (Mortar-Bar Method),” American Society for Testing and Materials, Philadelphia, USA, 1998.
58. ASTM C1260-94, “Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method),” American Society for Testing and Materials, Philadelphia, USA, 1998.
59. ASTM C1293-95, “Standard Test Method for Concrete Aggregates by Determination of Length Change of Concrete Due to Alkali-Silica Reaction, ”American Society for Testing and Materials, Philadelphia, USA, 1998.
指導教授 李釗(Chau Lee) 審核日期 2002-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明