以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:21 、訪客IP:18.191.165.192
姓名 陳怡萍(Yi-Pin Chen) 查詢紙本館藏 畢業系所 數學系 論文名稱 加權排列矩陣及加權位移矩陣之數值域
(Numerical Ranges of Weighted Permutation Matrices and Weighted Shift Matrices)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 在此論文中,我們將探討關於「加權排列矩陣」之數值域邊界有直線的等價條件,以及「加權位移矩陣」之數值域半徑與其weights排列順序之間的關係。首先,我們發現ㄧ個3*3的加權排列矩陣A,它的數值域W(A)會2π/3對稱,也就是說W(A)邊界有一條線,其圖形為一個三角形,若且為若,A是ㄧ個正規(normal)矩陣。如果A是ㄧ個4*4的加權排列矩陣,同樣地,它的數值域W(A)會2π/4對稱,若W(A)邊界有一條線,其圖形將為一個四邊形,若且為若,A可被分解為兩個2*2的加權排列矩陣。除此之外,我們發現一個4*4伴隨矩陣其數值域邊界有四條線的等價條件就是此伴隨矩陣可以被分解成兩個2*2的加權排列矩陣。
另外,我們已知一個n*n加權位移矩陣A的數值域W(A)為一個以原點為圓心的圓盤,我們發現n=4時,其數值域半徑r(A)最大若且為若|a2|為所有weights絕對值中的最大值;n=5時,其數值域半徑r(A)最大之等價條件則是|a2|或是|a3|為所有weights絕對值中的最大值。摘要(英) In this thesis, we will study about numerical ranges of
weighted permutation matrices and weighted shift matrices. Firstly,
we know that if $A$ is a $3 imes3$ weighted permutation matrix,
$W(A)$ has symmetry of $frac{2pi}{3}$. Thus, if there is a line
segment on $partial W(A)$ then $W(A)$ is a triangle. Moreover, $A$
is normal. If $A$ is a $3 imes3$ weighted permutation matrix,
$W(A)$ has symmetry of $frac{2pi}{4}$. If there is a line segment
on $partial W(A)$ then $W(A)$ is a quadrangle. Moreover, $Acong
A_{1}oplus A_{2}$, where $A_{1}$ and $A_{2}$ are $2 imes 2$
weighted permutation matrices. Let $A$ be a $4 imes4$ companion
matrix. We will see that $W(A)$ has four line segments if and only
if $A$ can be reducible.
Another subject is that we are interested in finding the order of
the weights of a weighted shift matrix so that the numerical radius
will be the largest.關鍵字(中) ★ 加權排列矩陣
★ 加權位移矩陣關鍵字(英) ★ Weighted Permutation Matrix
★ Weighted Shift Matrix論文目次 Abstract (in Chinese) . . . . . . . . . . . . . . . . . . . . . i
Abstract (in English) . . . . . . . . . . . . . . . . . . . . . iii
Chapter 1. Introduction . . . . . . . . . . . . . . . . . . . . . 1
Chapter 2. Preliminaries.. . . . . . . . . . . . . . . . . . . . . .3
2.1Basic Properties of Numerical Range.. . . . . . . . . . . . . . . . . . . . . .3
2.2Weighted Permutation Matrices. . . .. . . . . . . . . . . . . . . . . . . . . . . .4
2.3Companion Matrices .. . . . . . . . . . . . . . . . . . . . . . . .5
2.4Weighted Shift Matrices .. . . . . . . . . . . . . . . . . . . . . . . 6
Chapter 3. Weighted Permutation Matrices and Companion Matrices . . . . . . . . . . . . . . . . . . 10
Chapter 4. Weighted Shift Matrices . . . . . . . . . . . . . . . . . . . . . . 26
References .. . . . . . . . . . . . . . . . . . . . . . 31參考文獻 [1] E. S. Brown and I. M. Spitkovsky, On °at portions on the boundary of the
nymerical range, Linear Algebra and its Appl., 390 (2004), 75-109.
[2] H. L. Gau and P. Y. Wu, Companion matrices: reducibility, numerical ranges
and similarity to contractions, Linear Algebra and its Appl., 383 (2004), 127-142.
[3] K. E. Gustafson and D. K. M. Rao, Numerical Range, the Field of Values of
Linear Operators and Matrices, Springer, New York, 1997.
[4] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.
[5] R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge University
Press, 1991.
[6] D. S. Keeler, L. Rodman and I. M. Spitkovsky, The Numerical Range of 3 x 3
Matrices, Linear Algebra and its Appl., 252 (1997), 115-139.
[7] A. L. Shields, Weighted Shift Operators and Analytic Function Theory, in Topics in Operator Theory(C. Pearcy, Editor), Math. Surveys, vol. 13, Amer. Math. Soc., Providence, R. I., 1974.
[8] Q. F. Stout, The Numerical Range of a Weighted Shift, Pro. of the Amer. Math. Soc., Vol. 88, No. 3 (1983), 495-502.指導教授 高華隆(Hwa-Long Gau) 審核日期 2005-9-28 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare