參考文獻 |
1. D. Amadori, L. Gosse and G. Guerra, Global BV entropy solutions and uniqueness for hyperbolic systems of balance laws, Arch. Rational Mech. Anal. 162 (2002), pp. 327-366.
2. P. J. Blatz and W. L. Ko, Application of finite
elastic theory to the deformation of rubbery materials, Trans. Soc. Rheol. 6 (1962), pp. 223-251.
3. A. Bressan and Y. Zheng, Conservative solutions to a nonlinear variational wave equation, Comm. Math. Phys. 266 (2006), pp. 471-497.
4. Y. Chang, J. M. Hong and C.-H. Hsu, Globally Lipschitz continuous solutions to a class of quasilinear wave equations, J. Diff. Eqn. 236 (2007), pp. 504-531.
5. C. M. Dafermos and L. Hsiao, Hyperbolic systems of balance laws with inhomogeneity and dissipation, Indiana U. Math. J. 31 (1982), pp. 471-491.
6. G. Dal Maso, P. G. LeFloch and F. Murat, Definition and weak stability of nonconservative products, J. Math. Pures Appl. 74 (1995), pp. 483-548.
7. J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math. 18 (1965), pp. 697-715.
8. J. Glimm and P. D. Lax, Decay of solutions of systems of nonlinear hyperbolic conservation laws, American Mathematical Society Memoir, No. 101. American Mathematical Society, Providence, RI, 1970.
9. P. Goatin and P. G. LeFloch, The Riemann problem for a class of resonant nonlinear systems of balance laws, Ann. Inst. H. Poincare-Anal. Non-lineaire 21 (2004), pp. 881-902.
10. J. B. Goodman, Initial boundary value problem for hyperbolic systems of conservation laws, Ph.D. dissertation, Stanford University, 1982.
11. J. M. Greenberg, Smooth and time periodic solutions to the quasilinear wave equation, Arch. Rational Mech. Anal. 60 (1975), pp. 29-50.
12. J. M. Greenberg and M. Rascle, Time-periodic solutions to systems of conservation laws, Arch. Rational Mech. Anal. 115 (1991), pp. 395-407.
13. J. M. Hong, An extension of Glimm's method to inhomogeneous strictly hyperbolic systems of conservation laws by 'weaker than weak' solutions of the Riemann problem, J. Diff. Equ. 222 (2006), pp. 515-549.
14. J. M. Hong, C. H. Hsu and Y. C. Su, Global solutions
for initial-boundary value problem of quasilinear wave
equations, J. Diff. Equ. 245 (2008), pp. 223-248.
15. J. Hong and P. G. LeFloch, A version of Glimm method based on generalized Riemann problems, J. Portugal Math. (2007).
16. J. M. Hong and B. Temple, The generic solution of the Riemann problem in a neighborhood of a point of resonance for systems of nonlinear balance laws, Methods Appl. Anal. 10 (2) (2003), pp. 279-294.
17. J. M. Hong and B. Temple, A bound on the total variation of the conserved quantities for solutions of a general resonant nonlinear balance law, SIAM J. Appl. Math. 64 (3) (2004), pp. 819-857.
18. C. H. Hsu, S. S. Lin and T. Makino, Smooth solutions to a class of quasilinear wave equations, J. Diff. Eqns. 224 (2006), pp. 229-257.
19. J. K. Hunter and Y. Zheng, On a nonlinear hyperbolic
variational equation, I and II, Arch. Rational Mech. Anal.
129 (1995), pp. 305-353 and 355-383.
20. E. Isaacson and B. Temple, Nonlinear resonant in inhomogenous systems of conservation laws, Contemporary Mathematics, vol. 108 (1990).
21. E. Isaacson and B. Temple, Convergence of 2×2 Godunov method for a general resonant nonlinear balance laws, SIAM J. Appl. Math. 55 (1995), pp. 625-640.
22. F. John, Delay singularity formation in solutions of nonlinear wave equations in higher dimensions, Comm. Pure Appl. Math. XXIX (1976), pp. 649-681.
23. J. B. Keller and L. Ting, Periodic vibrations of systems govern by nonlinear partial diferential equations, Comm. Pure Appl. Math. XIX (1966), pp. 371-420.
24. S. Klainerman and A. Majda, Formation of singularities for wave equations including the nonlinear vibrating string, Comm. Pure Appl. Math. 33 (1980), pp. 241-263.
25. P. D. Lax, Hyperbolic system of conservation laws, II,
Comm. Pure Appl. Math. 10 (1957), pp. 537-566.
26. P. D. Lax, Hyperbolic system of conservation laws and mathematical theory of shock waves, Conf. Board Math. Sci. vol. 11, SIAM, Philadelpia, PA, 1973.
27. P. D. Lax, Development of singularities of solutions of nonlinear hyperbolic partial differential equations, J. Math. Phys. 5 (1964), pp. 611-613.
28. P. G. LeFloch, Entropy weak solutions to nonlinear hyperbolic systems under nonconservative form, Comm. Partial Differential Equations 13 (1988), pp. 669-727.
29. P. G. LeFloch, Shock waves for nonlinear hyperbolic systems in nonconservative form, Institute for
Mathematics and its Applications, Minneapolis, Preprint 593 (1989).
30. P. G. LeFloch and T.-P. Liu, Existence theory for nonlinear hyperbolic systems in nonconservative form, Forum Math. 5 (1993), pp. 261-280.
31. T.-P. Liu, Quasilinear hyperbolic systems, Comm. Math. Phys. 68 (1979), pp. 141-172.
32. T.-P. Liu, The Riemann problem for general systems of conservation laws, J. Diff. Equ. 18 (1975), pp. 218-234.
33. T.-P. Liu, Approximmate and qualitative behavior of admissible solutions of hyperbolic conservation laws, Mem. Amer. Math. Soc.
34. T.-P. Liu, Initial-boundary value problems for gas dynamics, Arch. Rat. Mech. Anal. 64 (1977), pp. 137-168.
35. M. Luskin and B. Temple, The existence of a global weak solution to the non-linear waterhammer problem, Comm. Pure Appl. Math. 35 (1982), pp. 697-735.
36. P. Marcati and R. Natalini, Global weak solutions to
quasilinear wave equations of Klein-Gordon and Sine-Gordon type, J. Math. Soc. Japan 50 (1998), no. 2, pp. 433-449.
37. T. Nishida and J. Smoller, Solutions in the large for some nonlinear hyperbolic conservation laws, Comm. Pure Appl. Math. 26 (1973), pp. 183-200.
38. T. Nishida and J. Smoller, Mixed problems for nonlinear conservation laws, J. Diff. Equ. 23 (1977), pp. 244-269.
39. B. G. Pachpatte, Integral inequalities of
Gronwall-Bellman type and their applications, J. Math. Phys. Sci., Madras, 8 (1974), pp. 309-318.
40. R. Peszek, Generalization of the Greenberg-Rascle
construction of periodic solutions to quasilinear equations of 1-d elasticity, Quart. Appl. Math. LVII (1999), pp. 381-400.
41. J. A. Smoller, On the solution of the Riemann problem with general step data for an extended class of hyperbolic system, Mich. Math. J. 16, pp. 201-210.
42. J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, Berlin, New York, 1983.
43. B. Temple, Global solution of the Cauchy problem for a class of 2×2 nonstrictly hyperbolic conservation laws, Adv. Appl. Math. 3 (1982), pp. 335-375.
44. P. Zhang and Y. Zheng, Weak solutions to a nonlinear
variational wave equation, Arch. Rational Mech. Anal. 166
(2003), pp. 303-319.
45. P. Zhang and Y. Zheng, Weak solutions to a nonlinear
variational wave equation with general data, Ann. Inst. H.
Poincare-Analyse Non-lineaire 22 (2005), pp. 207-226. |