參考文獻 |
[1] R. Bellman, Stability Theory of Differential Equations, McGraw-Hill, New York, 1953.
[2] H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal 82(1983), 313-345.
[3] J. Busca and B. Sirakov, Symmetry results for semi-linear elliptic systems in the whole space, J. Diff. Eqns 163(2000), 41-56.
[4] C. V. Coffman, Uniqueness of positive radial solution on an annulus of the Dirichlet problem for ¢u − u + u3 = 0, J. Diff. Eqns. 128(1996), 379-386.
[5] K.-S. Cheng and J.-L. Chern, Existence of positive solutions of some semi-linear elliptic equations, J. Diff. Eqns. 98(1992), 169-180.
[6] S. Chanillo and M. Kiessling, Rational symmetry of solutions of some non-linear problems in statistical mechanics and in geometry, Commun. Math. Phys. 160(1994), 217-238.
[7] K.-S. Cheng and J.-T. Lin, On the elliptic equations ¢u = K(x)uσ and ¢u = K(x)e2u, Trans. Amer. Math. Soc. 304(1987), 639-668.
[8] C.-C. Chen and C.-S. Lin, Uniqueness of the ground state solutions of ¢u+ f(u) = 0 in Rn , n ≥ 3, Commun. in Partial Diff. Eqns. 16(1991), 1549-1572.
[9] W. Chen and C. Li, Classici¯cation of solutions of some nonlinear elliptic equation, Duke Math. J. 63(1991), 615-622.
[10] K.-S. Cheng and C.-S. Lin, On the asymptotic behavior of solutions of the conformal Gaussian curvature euqation in R2, Math. Ann. 308(1997), 119-139.
[11] K.-S. Cheng and C.-S. Lin, On the conformal Gaussian Curvature Equation in R2, J. Diff. Eqns. 146(1998), 226-250.
[12] L. A. Caffarelli and Y. Yang, Vortex condensation in the Chern-Simons Higgs model: an existence theorem, Comm. Math. Phys. 168(1995), 321-336.
[13] J.-L. Chern and E. Yanagida, Structure of the sets of regular and singular radial solutions for a semilinear elliptic equation, J. Diff. Eqns. 224(2006), 440-463.
[14] J.-L. Chern, Z.-Y. Chen, and C.-S. Lin, Uniqueness of topological solutions and the structure of solutions for the Chern-Simons system with two Higgs particles, submitted.
[15] J. L. Chern, C. S. Lin, and J. Shi Uniqueness of Solution to a Coupled Cooperative System, preprint.
[16] J. L. Chern, C. S. Lin, and J. Shi Uniqueness of Solution to a Hamiltonian System, preprint.
[17] J. L. Chern, Z. Y. Chen, and Y. L. Tang, Uniqueness of Finite Total Curvatures and Structure of Radial Solutions for Nonlinear Elliptic Equations, submitted.
[18] Z. Y. Chen, J. L. Chern, and Y. L. Tang, The Structure of Radial Solutions for Elliptic Equations Arising from the Spherical Onsager Vortex, submitted.
[19] Z. Y. Chen, J. L. Chern, and Y. L. Tang, On the Blowup and Entire Solutions for a Biharmonic Equation, preprint.
[20] H. Chan, C.-C. Fu, and C.-S. Lin, Non-topological multi-vortex solutions to the self-dual Chern-Simons-Higgs equation, Commun. Math. Phys. 231(2002), 189-221.
[21] Ph. Clément, D.G. de Figueriredo and E. Mitidieri Positive solutions of semilinear elliptic systems, Commun. Partial Diff. Eqns. 17(1992), 923-940.
[22] D. Chae and O. Y. Imanuvilov, The existence of non-topological multivortex solutions in the relativistic self-dual Chern-Simons theory, Comm. Math. Phys. 215(2000), 119-142.
[23] X. Chen, S. Hastings, J. B. Mcleod, and Y. Yang, A nonlinear elliptic equation arising from gauge filed theory and cosmology, Proc. Roy. Soc. London Ser. A 446(1994), 453-478.
[24] J. L. Chern, Z. Y. Chen, J. H. Chen and Y. L. Tang, On the Classication of Standing Wave Solutions for the Schrödinger Equation, submitted.
[25] Z. Y. Chen, J. L. Chern, Y. L. Tang, and C. S. Lin, The Linearization and Uniqueness of Solutions for Elliptic Systems, submitted.
[26] Z. Y. Chen, J. L. Chern, Y. L. Tang, C. S. Lin, and J. Shi Existence, Uniqueness and Stability of Solution to Sublinear Elliptic System, preprint.
[27] R. Dalmasso, Solutions positives globales d'une equation biharmonique surlineaire, Funkcialaj Ekavacioj 33(1990), 475-492.
[28] G. Dunne, Self-Dual Chern-Simons Theories, Lecture Notes in Physics, Vol. 36, Springer, Berlin, 1995.
[29] R. Dalmasso, Existence and uniqueness of positive solutions of semilinear elliptic systems, Nonlinear Analysis 39(2000), 559-568.
[30] R. Dalmasso, Existence and uniqueness of positive radial solutions for the Lane-Emden systems, Nonlinear Analysis 57(2004), 341-348.
[31] J. Dziarmaga, Low energy dynamics of [U(1)]N Chern-simons solitons, Phys. Rev. D 49(1994), 5469-5479.
[32] D.G. de Figueiredo and P.L. Felmer, A Liouville-Type for elliptic systems, Ann. Scuola Norm. Sup. Pisa, 21(1994), 387-397.
[33] P. L. Felmer, A. Quaas, M. Tang, and J. Yu, Monotonicity properties for ground states of the scalar field equation, Ann. I. H. Poincaré -AN, 25(2008), 105-119.
[34] Y. Furusho and K. Taka^si, Supersolution-subsolution method for nonlinear biharmonic equations in Rn, Czechoslovak Math. J. 47(122)(1997), 749-768.
[35] F. Gazzola and H.-C. Grunau Radial entire solutions for supercritical bi-harmonic equations, Math. Ann. 334(2006), 905-936.
[36] B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in RN , Mathematical Analysis and Applica-tions, Part A, 369-402, Adv. in Math. Suppl. Stud., 7a, Academic Press, New York-London(1981).
[37] P. Hartman, Ordinary Differential Equations, Wiley, New York, 1964 (2nd ed. Barkhauser, Boston Basel Stattgart, 1982).
[38] J. Hulshof and R. Van der Vorst, Differential systems with strongly indefinite variational structure, J. Funct. Anal. 114(1993), 32-58.
[39] J. Hong, Y. Kim, and P. Y. Pac, Multivortex solutions of the Abelian Chern-Simons-Higgs theory, Phys. Rev. Lett. 64(1990), 2230-2233.
[40] R. Jackiw and S.-Y. Pi, Soliton solutions to the gauged nonlinear Schrödinger equation on the plane, Phys. Rev. Lett. 64(1990), 2969-2972.
[41] R. Jackiw and E. J. Weinberg, Self-dual Chern-Simons vortices, Phys. Rev. Lett. 64(1990), 2234-2237.
[42] A. Jaffe and C. Taubes, Vortices and Monopoles, Progress in Physics Vol. 2, BirkhÄauser Boston. Mass., 1980.
[43] R. Johnson, X.-B. Pan, and Y.-F. Yi, Singular solutions of the elliptic equation ¢u − u + up = 0, Ann. Mat. Pura Appl. 166(1994), 203-225.
[44] M. K. Kwong, Uniqueness of positive solutions of ¢u − u + up = 0 in Rn , Arch. Rational Mech. Anal. 105(1989), 243-266.
[45] C. N. Kumar and A. Khare, Charged vortex of ¯nite energy in nonabelian gauge theories with Chren-Simons term, Phys. Lett. B 178(1986), 395-399.
[46] K. Taka^si and C. A. Swanson, Positive entire solutions of semilinear biharmonic equations, Hiroshima Math. J. 17(1987), 13-28.
[47] N. Kawano, E. Yanagida, and S. Yotsutani, Structure theorems for positive radial solutions to ¢u + K(jxj)up = 0 in Rn, Funkcial. Ekvac. 36(1993), 557-579.
[48] C. Kim, C. Lee, P. Ko, B. H. Lee, and H. Min, Schrödinger fields on the plane with [U(1)]N Chern-Simons interactions and generalized self-dual solitons, Phys. Rev. 48(1993), 1821-1840.
[49] P.-L. Lions, Isolated singularities in semilinear problems, J. Diff. Eqns. 38(1980), 441-450.
[50] C.-S. Lin, A classification of solutions of a conformally invariant fourth order equation in Rn, Comment. Math. Helv.73(1998), 206-231.
[51] C.-S. Lin, Uniqueness of solutions to the mean field equations for the spherical Onsager vortex, Arch. Rational Mech. Anal. 153(2000), 153-176.
[52] E. H. Lieb and J. P. Solovej, Ground state energy of the two-component charged Bose gas, Commun. Math. Phys. 252(2004), 485-534.
[53] Y. Liu, Y Li, and Y. Deng, Separation property of solutions for a semilinear elliptic equation, J. Diff. Eqns. 163(2000), 381-406.
[54] C.-S. Lin, A. C. Ponce, and Y. Yang, A system of elliptic equations arising in Chern-Simons ¯eld theory, J. Funct. Anal. 247(2007), 289-350.
[55] G. Lu, J. Wei, and X. Xu, On Conformally invariant equation (¡¢)pu − K(x)u N+2p N¡2p = 0 and its generalizations, Annali Di Math. Pura ed appl.(IV) CLXXIX(2001), 309-329.
[56] K. Mcleod, Uniqueness of positive radial solutions of ¢u + f(u) = 0 in Rn . II. Ameri. Math. Soc. 339(1993), 495-505.
[57] E. Mitidieri, A Rellich type identity and applications , Commun. Partial Diff. Eqns. 18 (1993), 125-151.
[58] E. Mitidieri, Nonexistence of positive solutions of semilinear elliptic systems in RN . , Differential and Integral Equations 9 No.3 (1996), 465-479.
[59] H. Morishita, E. Yanagida, ans S. Yotsutani, Structure of positive radial solutions including all singular solutions to Matukuma's equation, Commun. Pure Appl. Anal. 4(2005), 871-888.
[60] W.-M. Ni, On the elliptic equation ¢u(x) + k(x)u (n+2) (n¡2) (x) = 0 its generalizations, and Applications in Geometry, Indiana Univ. Math. 31(1982), 41-56.
[61] M. Naito, A note on bounded positive entire solutions of semilinear elliptic equations, Hiroshima Math. J. 14(1984), 211-214.
[62] W.-M. Ni and J. Serrin, Nonexistence theorems for singular solutions of quasilinear partial differential equations, Comm. Pure Appl. Math., 39(1986), 379-399.
[63] E. S. Noussair, C. A. Swanson, and J. Yang, Transcritical biharmonic in Rn, Annali Di Math. Pura ed appl.(IV) 35(1992), 533-543.
[64] W.-M. Ni and S. Yotsutani, Semilinear elliptic equations of Matukuma-type and related topics, Japan J. Appl. Math. 5(1988), 1-32.
[65] L. Polvani and D. Dritschel, Wave and vortex dynamics on the surface of a sphere, J. Fluid Mech. 255(1993), 35-64.
[66] L.A. Peletier, and R. Van der Vorst, Existence and nonexistence of positive solutions of nonlinear elliptic systems and the biharmonic equation, J. Differential and Integral Equations 5(1992), 747-767.
[67] J. Qi and Y. Lu, The slowly decaying solutions of ¢u + f(u) = 0 in Rn , Funkcial. Ekvac. 41(1998), 317-326.
[68] B. Sirakov, Standing waves solutions of the nonlinear Schrödinger equation in RN , Ann. Mat. Pura Appl. 181(2002), 73-83.
[69] J. Spruck and Y. Yang, The existence non-topological solutions in the self-dual Chern-Simons theory, Comm. Math. Phys. 149(1992), 361-376.
[70] C. A. Swanson and L. S. Yu, Radial polyharmonic problems in Rn, J. Math. Anal. Appl. 174(1993), 461-466.
[71] J. Spruck and Y. Yang, Topological solutions in the self-dual Chren-Simons theory: existence and approximation, Ann. Inst. H. Poincaré Anal. Non Linéaire 12(1995), 75-97.
[72] J. Serrin and H. Zou, Nonexistence of positive solutions of Lane-Emden systems, Differential and Integral equations 9 No.4 (1996), 635-653.
[73] G. Tarantello, Uniqueness of selfdual periodic Chern-Simons vortices of topological type, Calc. Var. Partial Diff. Eqns 29(2007), 191-217.
[74] R. Van der Vorst, Variational identites and applications to differential systems , Arch. Rational Mech. Anal. 116(1991), 375-398.
[75] H. J. de Vega and F. A. Schaponsnilk, Electrically charged vortices in non-abelian gauge theories with Chren-Simons term, Phys. Rev. Lett. 56(1986), 2564-2566.
[76] E. Yanagida, Mini-maximizers for reaction-diffusion systems with skewgradient structure, J. Diff. Eqns 179(2002), 311-335.
[77] E. Yanagida, Structure of radial solutions to ¢u + K(jxj)jujp¡1u = 0 in Rn, SIAM J. Math.Anal. 27(1996), 997-1014.
[78] E. Yanagida, Uniqueness of positive radial solutions of ¢u + f(u, jxj) = 0, Nonlinear Anal. 19(1992), 1143-1154.
[79] Y. Yang, The relativistic non-abelian Chren-Simons equations, Comm. Math. Phys. 186(1997), 199-218.
[80] Y. Yang, Solitons in Filed Theory and Nonlinear Analysis, Springer Monographs in Mathematics, Springer-Verlag, New York, 2001.
[81] E. Yanagida and S. Yotsutani, Existence of positive radial solutions to ¢u+ K(jxj)up = 0 in Rn, J. Diff. Eqns 115(1995), 477-502.
[82] E. Yanagida and S. Yotsutani, Global structure of positive solutions to equations of Matukuma Type, Arch. Rational Mech. Anal. 134(1996), 199-226.
[83] Z. Y. Chen, J. L. Chern, Y. L. Tang, and J. Shi On the Uniqueness and Structure of Solutions for a Nonlinear Elliptic System via Linearization Approaches, preprint. |