博碩士論文 93221007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:18.224.55.63
姓名 王世杰(Shih-Chieh Wang)  查詢紙本館藏   畢業系所 數學系
論文名稱 擬線性波方程中片段線性初始值問題的整體Lipchitz連續解的
(The Global Lipchitz Continuous Solutions to the Quasilinear Wave Equation with Peicewise Linear Initial Data)
相關論文
★ 氣流的非黏性駐波通過不連續管子之探究★ An Iteration Method for the Riemann Problem of Some Degenerate Hyperbolic Balance Laws
★ 影像模糊方法在蝴蝶辨識神經網路中之應用★ 單一非線性平衡律黎曼問題廣義解的存在性
★ 非線性二階常微方程組兩點邊界值問題之解的存在性與唯一性★ 對接近音速流量可壓縮尤拉方程式的柯西問題去架構區間逼近解
★ 一些退化擬線性波動方程的解的性質.★ 水文地質學的平衡模型之擴散對流反應方程
★ 非線性守恆律的擾動Riemann 問題的古典解★ BBM與KdV方程初始邊界問題解的週期性
★ 共振守恆律的擾動黎曼問題的古典解★ 可壓縮流中微黏性尤拉方程激波解的行為
★ 非齊次雙曲守恆律系統初始邊界值問題之整域弱解的存在性★ 有關非線性平衡定律之柯西問題的廣域弱解
★ 單一雙曲守恆律的柯西問題熵解整體存在性的一些引理★ 二階非線性守恆律的整體經典解
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在這篇論文裡面我們主要是對一些擬線性波方程研究Lipchitz連續解的總體存在性,藉著一次微分的假設當做新的未知數,我們重新把方程式寫成守衡律中的三乘三Hyberlbolic system,這個初始值問題對線性的初始值而言已經被解決了,解的一次微分的整體存在性是藉著Lex method 來建立的。
摘要(英) In this paper we study the global existence of Lipchitz continous solutions to the quasilinear wave equation. By letting the first derivatives as new unknowns, we rewrite the equation into a 3 by 3 hyperbolicsystem of conservation laws. The initial value problem of the ststem is studied for some linear initial data. The global existence of the first derivatives of solutions are established by Lex method.
關鍵字(中) ★ 擬線性波方程
★ 守恆律
★ 非線性平衡律
★ 黎曼問題
★ Lex方法
關鍵字(英) ★ Lax method
★ Riemann problems
★ Nonlinear balance laws
★ Quasilinear wave equations
★ Conservation laws
論文目次 中文摘要………………………………………………………………i
英文摘要………………………………………………………………ii
圖目錄…………………………………………………………………iii
一. Introduction…………………………………………………….2
二. Elementary Waves and Corresponding Wave Curves…………..5
三. Existence of Weak Solutions, Lipchitz Continuoous Solutions…25
四. Reference…………………………………………………………27
參考文獻 [1] C. Dafermos, Generalized characteristics and the structure of solutions of
hyperbolic conservation laws, Ind. Univ. Math. J. 26 (1977), 1097-1119.
[2] C. Dafermos, Solutions of the Riemann problem for a class of conservation
laws by the viscosity method, Arch. Ration. Mech. Anal., 52 (1973), 1-9.
[3] G. Dal Maso, P. LeFloch and F. Murat, Definition and weak stability of
nonconservative products, J. Math. Pure. Appl., 74(1995), 483-548.
[4] J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equa-
tions, Comm. Pure Appl. Math., 18(1956), 697-715.
[5] J. M. Hong, An extension of Glimm’s method to inhomogeneous strictly
hyperbolic systems of conservation laws by ”weaker than weaker” solutions
of the Riemann problem, J. Diff. Equations, 222(2006), 515-549.
[6] J. M. Hong and B. Temple, A Bound on the Total Variation of the Con-
served Quantities for Solutions of a General Resonant Nonlinear Balance
Law, SIAM J. Appl. Math. 64, No 3, (2004), pp 625-640.
[7] E. Isaacson and B. Temple, Convergence of 2 × 2 by Godunov method for
a general resonant nonlinear balance law, SIAM J. Appl. Math. 55 (1995),
pp 625-640.
[8] K. T. Joseph and P. G. LeFloch, Singular limits for the Riemann problem:
general diffusion, relaxation, and boundary condition, in ” new analytical
approach to multidimensional balance laws”, O. Rozanova ed., Nova Press,
2004.
[9] S. Kruzkov, First order quasilinear equations with several space variables,
Math. USSR Sbornik 10 (1970), 217-273.
[10] P. D. Lax, Hyperbolic system of conservation laws, II, Comm. Pure Appl.
Math., 10(1957), 537-566.
[11] T. P. Liu, The Riemann problem for general systems of conservation laws,
J. Diff. Equations, 18(1975), 218-234.
[12] T. P. Liu, Quaslinear hyperbolic systems, Comm. Math. Phys., 68(1979),
141-172.
[13] C. Mascia and C. Sinestrari, The perturbed Riemann problem for a balance
law, Advances in Differential Equations, 1996-041.
[14] O. A. Oleinik, Discontinuous solutions of nonlinear differential equations,
Amer. Math. Soc. Transl. Ser. 2, 26 (1957), 95-172.
[15] C. Sinestrari, The Riemann problem for an inhomogeneous conservation
law without convexity, Siam J. Math. Anal., Vo28, No1, (1997), 109-135.
[16] C. Sinestrari, Asymptotic profile of solutions of conservation laws with
source, J. Diff. and Integral Equations, Vo9, No3,(1996), 499-525.
[17] M. Slemrod and A. Tzavaras, A limiting viscosity approach for the Rie-
mann problem in isentropic gas dynamics, Ind. Univ. Math. J. 38 (1989),
1047-1073.
[18] J. Smoller, Shock waves and reaction-dffusion equations, Springer, New
York, 1983.
[19] A. Tzavaras, Waves interactions and variation estimates for self-similar
zero viscosity limits in systems of conservation laws, Arch. Ration. Mech.
Anal., 135 (1996), 1-60.
[20] A. Volpert, The space BV and quasilinear equations, Maths. USSR Sbornik
2 (1967), 225-267.28
指導教授 洪盟凱(John M. Hong) 審核日期 2007-11-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明