

一作答注意事項—

- 作答中如發現試題印刷不清,得舉手請監試人員處理,但不得要求 解釋題意。
- 2. 請核對答案卷(卡)上之准考證號、考試科目是否正確。
- 本考科可使用電子計算器(一般認知之小型電子計算器),不限廠牌型號,但不包含手機、平板或其他智慧型手持裝置。
- 4. 選擇題請在答案卡上作答,非選擇題請在答案卷(作答區內)作答。
- 考生限在作答區內作答,不可書寫姓名、准考證號或與作答無關之 其他文字或符號。
- 6. 答案卷用盡不得要求增加。
- 7. 答案卷限用藍筆或黑色鋼筆、原子筆或鉛筆書寫;答案卡限用 2B 軟心鉛筆畫記,如畫記不清(含未依範例畫記)致光學閱讀機無法 辨識答案者,其後果考生自行負責。
- 8. 因字跡潦草或作答未標明題號等情事,致評閱人員無法辨識答案者, 該部分不予計分。

台灣聯合大	學系統 107 學年度學士班轉學生考試	式試題
科目普通化學	_類組別A7	共9_頁 第_1頁
 一、 單選題 75% 1. Which has the least ki A) a 1200 kg object moving B) a 1400 kg object moving C) a 1600 kg object moving D) a 1800 kg object moving 	at 90 km/hr at 85 km/hr at 80 km/hr	参考用

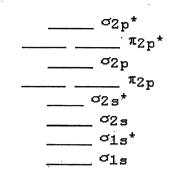
2. What group of elements does the shaded area in the following periodic table indicate?

- A) gases
- B) metals
- C) nonmetals
- D) semimetals
- 3. Aluminum metal reacts with aqueous iron(II) chloride to form aqueous aluminum chloride and iron metal. What is the stoichiometric coefficient for iron when the chemical equation is balanced using the lowest whole-number stoichiometric coefficients?

A) 0 B) 3 C) 5 D) 8

4. What is the first ionization energy for a hydrogen atom in the ground state? The Rydberg constant is $1.097 \times 10^{-2} \text{ nm}^{-1}$.

A) 7.27 × 10⁻³⁶ J


B) 1.63 × 10⁻²⁷ J

- C) 2.18 × 10⁻¹⁸ J
- D) 0.00823 J

,

科目_	普通化學	频組別	A7		<u><u>4</u>]</u>	〔第_2_〕
				·		
5.	The symbol [Kr] r	epresents				
	4s ² 4p ⁶ .					
	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ²	•				
	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰					
D) [1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹	$^{0}4s^{2}4p^{6}4d^{10}$.				
6.	Which have the la	argest number of u	inpaired electron	s in <i>p</i> orbitals in	their grou	Ind-state
	electron configura	ations?			ن ب	1 and 1
A) (N, As, Bi					13
B) F	, At, Br					2.0
C) N	le, Ar, Xe					3
D) E	3, Ga, Tl		· .			
	· · ·					开]
7.	Assign formal chai	rges to each atom	in the resonance	form for SOCl ₂ a	iven belo	•
						,
	:0:					
•••	···					
• •	- D CI.					
A) 0	for Cl, 0 for S, and () for O				
	for Cl, +1 for S, and					
	for Cl, +4 for S, and					Δ
	for Cl, -2 for S, and		.:			7
•	-,-··-	···				
8.	Which of the follow	ving would be exp	ected to have sn^2	hybridization	atom A2	
		X.	:E:	,		
	: e—a=x	: x—A—x:	 xa-	x: x==	-A==-X	
	·· ··	** **		•• ••	••	
	-	II	. III	· ·	IV	
A) II						
B) I a	nd III			·		. •
	, and III		£	· .		
D) a						
Jid		• .		·		
		·				
						
		注意:背	面有試測			

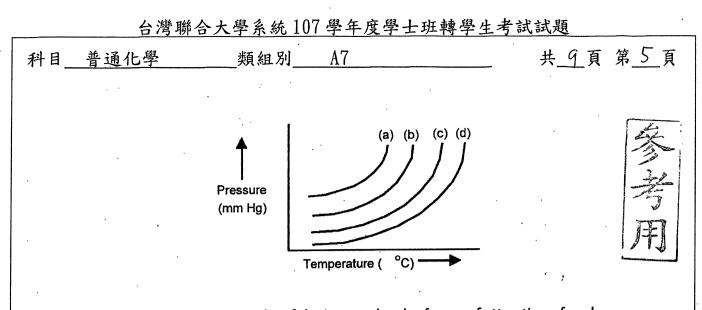
,		台灣聯	第合大學系統 107	學年度:	學士班轉學?	生考試試題
	科自_	普通化學	類組別	A7		_ 共 <u>9</u> 頁第 <u>3</u> 頁
	9.	The MO diagra	m below is appropria	ate for B ₂ (I	Boron atom)	Based on this diagram B_2

A) has a bond order of one and is diamagnetic.

B) has a bond order of one and is paramagnetic.

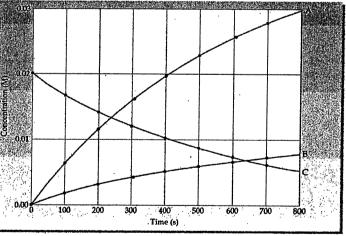
C) has a bond order of two and is diamagnetic.

D) has a bond order of two and is paramagnetic.


- 10. Calculate the work energy, w, gained or lost by the system when a gas expands from 20 L to 35 L against a constant external pressure of 2.0 atm. $[1 L \cdot atm = 101 J]$
- A) -5.3 kJ
- B) -3.0 kJ
- C) +3.0 kJ
- D) +5.3 kJ
- 11. When 50.0 mL of 0.400 M Ca(NO₃)₂ is added to 50.0 mL of 0.800 M NaF, CaF₂ precipitates, as shown in the net ionic equation below. The initial temperature of both solutions is 30.00°C. Assuming that the reaction goes to completion, and that the resulting solution has a mass of 100.00 g and a specific heat of 4.18 J/(g · °C), calculate the final temperature of the solution.

 $Ca^{2+}_{(aq)} + 2 F^{-}_{(aq)} \rightarrow CaF_{2(s)} \Delta H^{\circ} = -11.5 \text{ kJ}$

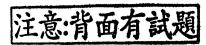
A) 29.45°C B) 30.55°C C) 31.10°C D) 31.65°C


	普通化學	類組別A7		共9頁第4頁
12.	_	andard enthalpies of form	ation to calculate ΔH° for	the following
	reaction			
	$3 \text{ Fe}_2O_3(s) + CO(g$	$g) \rightarrow 2 \operatorname{Fe}_3O_4(s) + \operatorname{CO}_2(g).$	•	2
		· · ·		est.
	$\frac{\text{Species}}{\text{Fe}_2\text{O}_3(s)} = \frac{\Delta H^\circ_{f_r}}{-824}$	•		
	$Fe_2O_3(s) = -824$ $Fe_3O_4(s) = -111$	· · · ·		- There a
	CO(g) -110			
	CO ₂ (g) -39	•		E
	•			J.J
A) -	5213.4 kJ			
•	577.2 kJ	· ·		
•	47.2 kJ	· .		
-	-47.2 kJ			
27				
10				
		on of water to ice at 25°C a	and 1 atm,	
•	AG is negative and a	·		
B) Δ	G is negative and A	ΔH is positive.		
C) ∆	ΔG is positive and Δ	H is negative.		
D) /	AG is positive and A	\H is positive.		·
14.	Each of three ide	ntical 15.0-L gas cylinders	contains 7.50 mol of gas	at 295 K. Cylinder A
	contains HCN, cyl	linder B contains NO ₂ , and	l cylinder C contains O₃. A	ccording to the
	kinetic molecular	theory, which gas has the	e highest average kinetic e	energy?
A) H	ICN			
B) N	IO ₂			
•)3			
C) (verage kinetic energies		
C) C		le age kinetie energies		
D) A		vorvusoful in baromotors	marcuru yanar is tayis (Siven that moreury
D) A	While mercury is	very useful in barometers	,	
D) A	While mercury is has a ΔH _{vap} of 59.	11 kJ/mol and its normal	boiling point is 356.7°C, c	
D) A 15.	While mercury is has a ΔH _{vap} of 59. pressure in mm H		boiling point is 356.7°C, c	
D) A 15. A) 2	While mercury is has a ΔH _{vap} of 59. pressure in mm H .68 × 10-3 mm Hg	11 kJ/mol and its normal	boiling point is 356.7°C, c	
D) A 15. A) 2	While mercury is has a ΔH _{vap} of 59. pressure in mm H	11 kJ/mol and its normal	boiling point is 356.7°C, c	
D) A 15. A) 2 B) 2	While mercury is has a ΔH _{vap} of 59. pressure in mm H .68 × 10-3 mm Hg	11 kJ/mol and its normal	boiling point is 356.7°C, c	
D) A 15. A) 2 B) 2 C) 3	While mercury is has a ΔH _{vap} of 59. pressure in mm H .68 × 10-3 mm Hg .99 mm Hg	11 kJ/mol and its normal	boiling point is 356.7°C, c	•
D) A 15. A) 2 B) 2 C) 3	While mercury is has a ΔH _{vap} of 59. pressure in mm H .68 × 10-3 mm Hg .99 mm Hg 72 mm Hg	11 kJ/mol and its normal	boiling point is 356.7°C, c	•
D) A 15. A) 2 B) 2 C) 3 D) 7	While mercury is has a ΔH _{vap} of 59. pressure in mm H .68 × 10-3 mm Hg .99 mm Hg 72 mm Hg 53 mm Hg	11 kJ/mol and its normal	boiling point is 356.7°C, c	alculate the vapor

.

- 16. Based on the relative strengths of the intermolecular forces of attraction of each substance, which is the most likely vapor pressure vs. temperature curve for diethyl ether?
- A) curve (a)
- B) curve (b)
- C) curve (c)
- D) curve (d)
- 17. How much heat is released when 95.0 g of steam at 100.0°C is cooled to ice at -15.0°C? The enthalpy of vaporization of water is 40.67 kJ/mol, the enthalpy of fusion for water is 6.01 kJ/mol, the molar heat capacity of liquid water is 75.4 J/(mol · °C), and the molar heat capacity of ice is 36.4 J/(mol · °C).
- A) 54.8 kJ
- B) 247 kJ
- C) 289 kJ
- D) 314 kJ
- 18. Barium has a radius of 224 pm and crystallizes in a body-centered cubic structure. What is the edge length of the unit cell?
- A) 259 pm
- B) 317 pm
- C) 448 pm
- D) 517 pm
- 19. When a particular solid begins to dissolve in water, the temperature rises dramatically. For the dissolving of this solid in pure water
- A) ΔH_{soln} is always negative and ΔS_{soln} may be negative or positive.
- B) ΔH_{soln} is always negative and ΔS_{soln} is always positive.
- C) ΔH_{soln} is always positive and ΔS_{soln} may be negative or positive.
- D) ΔH_{soln} is always positive and ΔS_{soln} is always positive.

科目	普通化學	類組別	A7		共9百	第_6_頁
• • •			·			<u></u>
20.	The second-order	r reaction, 2 Mn(($CO)_5 \rightarrow Mn_2(C)$	O) ₁₀ has a rate	constant equal t	o 3.0 ×
	109 M ⁻¹ s ⁻¹ at 25°0	C. If the initial con	centration of	Mn(CO)₅ is 1.0) × 10⁻⁵ M, how lo	ong will it
	take for 90.% of t	he reactant to dis	appear?	:		e.c.
A) 3	3.3 × 10 ⁻¹⁶ s				. •	
B) :	3.7 × 10 ^{−15} s	. •				- Look
C) 3	3.0 × 10⁻⁴ s	:				5
D) 3	$3.0 \times 10^3 \mathrm{s}$				ć ;	一用
21.	The first-order iso					
	1.10 × 10 ⁻⁴ s ⁻¹ at 4	70°C and 5.70 × 1	10 ⁻⁴ s ⁻¹ at 500°	C. What is the	activation energy	y, E _a , for
	the reaction?					
A) 4	16 kJ/mol					
B) 1	.10 kJ/mol					
C) 2	60 kJ/mol					
· D) 3	380 kJ/mol					
C) 2	60 kJ/mol					
22.	The following figu	re depicted the va	ariation of A,E	3,and C concen	tration variation	with
	reaction time					


Which equation best represents the reaction?

A) $4A(g) \rightarrow B(g) + 2C(g)$ B) $4A(g) + B(g) \rightarrow 2C(g)$ C) $2C(g) \rightarrow 4A(g) + B(g)$ D) $2C(g) + B(g) \rightarrow 4A(g)$

注意:背面有試題

科目普通化學	类	頁組別	A7			共9頁	第 <u>)</u> 頁
	• •						
23. An equilibr	ium mixture o	of CO, O ₂ a	nd CO ₂ at a	certain ten	nperature c	ontains 0.00	010 M
CO_2 and O_2	0015 M O2. At	this temp	erature, Ko	, equals 1.4	\times 10 ² for the	ne reaction:	·
						·	E E
		2 CO(g) + O₂(g) ≓	≥ 2 CO ₂ (g).			The
			(l			Real
What is the equi	ilibrium conce	entration o	f CO?		,		13
A) 4.8×10^{-6} M						6 g · ·	III
B) 2.2×10^{-3} M							门内
C) 9.3×10^{-2} M							L
D) 3.1 × 10 ⁻¹ M							
24 Shown hale	wic a concor	tration	time plot	for the read	tion $\Lambda \rightarrow 2E$	Earthic ra	action
24. Shown belo			•	for the reac	tion A \rightleftharpoons 2E	8. For this re	action
	ow is a concen f the equilibri		•	for the reac	tion A ⇔ 2E	8. For this re	action
			•	for the reac	tion A 렂 2E	8. For this re	action
			•	for the reac	tion A ⇔ 2E	3. For this re	action
	f the equilibri		•	for the reac	tion A ⇔ 2E	B. For this re	action
the value o	f the equilibri		•	for the reac	tion A ⇒ 2E		action
the value o	f the equilibri		•	for the reac	tion A ≓ 2E		action
the value o	f the equilibri		•	for the reac	tion A ⇒ 2E	A	action
	f the equilibri 0.100 0.080 0.060 0.040 0.020		•	for the reac	tion A ⇒ 2E	A	action
the value o	f the equilibri		•	for the reaction of the reacti	tion A ⇒ 2E	A	action
the value o	f the equilibri	um constan	nt is			A B	action

- 25. An acidic solution at 25°C has
 A) [H3O⁺] > [OH⁻] > 1 × 10⁻⁷ M.
 B) [H3O⁺] > 1 × 10⁻⁷ M > [OH⁻].
- C) [H3O⁺] = [OH⁻] > 1 × 10⁻⁷ M.
- D) $[H3O^+] < 1 \times 10^{-7} \text{ M} > [OH^-].$
- 26. For the hypothetical reaction A + 2 B^x \rightarrow A^y + 2 B, E° = 1.50 V = and ΔG° = -305 kJ. For this reaction, if the value of x is ⁴, then the value of y = _____.
- A) 1 B) 2 C) 3 D) 4

目普通化學	_類組別A7		共 <u>9</u> 頁 第 <u>8</u>
· ·			
•			
27. Given: $Ag^+(aq) + e^-$	\Rightarrow Ag _(s) E° = +0.799 V		
$AgI_{(s)} + e \rightarrow Ag_{(s)} + I_{(a)}$	$E^{\circ} = -0.152 \text{ V}$		
$Ni^{2+}(aq) + 2 e^{-} \rightarrow Ni_{(s)}E$	° = -0.267 V		
Which of the following rea	ctions should be spontane	ous under standa	ard conditions?
$I. 2 \operatorname{Agl}_{(s)} + \operatorname{Ni}_{(s)} \rightarrow 2$	$2 \operatorname{Ag}_{(s)} + 2 \operatorname{I}_{(aq)}^{-} + \operatorname{Ni}^{2+}_{(aq)}$		X
II. $Ag^{+}_{(aq)} + I^{-}_{(aq)} \rightarrow A$	gl(s)		
A) I and II are both nonspo	ntaneous.		
B) I is nonspontaneous and	I II is spontaneous.		厂
C) I is spontaneous and II is	nonspontaneous.		
D) I and II are both spontar	neous.	· ·	
Reduction Half-Reaction	E ^o (V)		
Reduction Half-Reaction $A^+ + e^- \rightarrow A$	E ^o (V) 0.70		
·			
A⁺+ e⁻ →A	0.70		· · · · ·
A^+ + e ⁻ →A B^{2+} + 2 e ⁻ → B	0.70 0.43		
$A^{+}+e^{-} \rightarrow A$ $B^{2+}+2e^{-} \rightarrow B$ $C_{3}+3e^{-} \rightarrow 3C^{-}$	0.70 0.43 0.27		· · · · · · · · · · · · · · · · · · ·
$A^{+}+e^{-} \rightarrow A$ $B^{2+}+2e^{-} \rightarrow B$ $C_{3}+3e^{-} \rightarrow 3C^{-}$ Which substance is the stro	0.70 0.43 0.27		ŋ
A^+ + e ⁻ → A B^{2+} + 2 e ⁻ → B C_3 + 3 e ⁻ → 3 C ⁻ Which substance is the stro	0.70 0.43 0.27 ngest reducing agent?		λ
$A^{+}+e^{-} \rightarrow A$ $B^{2+}+2e^{-} \rightarrow B$ $C_{3}+3e^{-} \rightarrow 3C^{-}$ Which substance is the stro A) A B) B C) C ₃ D) 29. Which reaction below	0.70 0.43 0.27 ngest reducing agent? C ⁻	 positron (正子)。	۹ emission?
$A^{+}+e^{-} \rightarrow A$ $B^{2+}+2e^{-} \rightarrow B$ $C_{3}+3e^{-} \rightarrow 3C^{-}$ Which substance is the stro A) A B) B C) C ₃ D)	0.70 0.43 0.27 ngest reducing agent? C ⁻	positron (正子)。	emission?
$A^{+}+e^{-} \rightarrow A$ $B^{2+}+2e^{-} \rightarrow B$ $C_{3}+3e^{-} \rightarrow 3C^{-}$ Which substance is the stro A) A B) B C) C ₃ D) 29. Which reaction below	0.70 0.43 0.27 ngest reducing agent? C ⁻	 positron (正子)。	emission?
A ⁺ + e ⁻ →A B ²⁺ + 2 e ⁻ → B C ₃ + 3 e ⁻ → 3 C ⁻ Which substance is the stro A) A B) B C) C ₃ D) 29. Which reaction below A) ${}^{15}_{8}O \rightarrow {}^{-1}_{0}e + {}^{15}_{9}Ra$ B) ${}^{15}_{8}O \rightarrow {}^{-1}_{0}e + {}^{15}_{7}N$ C) ${}^{15}_{8}O \rightarrow {}^{-1}_{0}e + {}^{18}_{6}N$	0.70 0.43 0.27 ngest reducing agent? C ⁻	 positron (正子)。	a emission?
A ⁺ + e ⁻ →A B ²⁺ + 2 e ⁻ → B C ₃ + 3 e ⁻ → 3 C ⁻ Which substance is the stro A) A B) B C) C ₃ D) 29. Which reaction below A) ${}^{15}_{8}O \rightarrow {}^{-1}_{0}e + {}^{15}_{9}Ra$ B) ${}^{15}_{8}O \rightarrow {}^{1}_{0}e + {}^{15}_{7}N$	0.70 0.43 0.27 ngest reducing agent? C ⁻	 positron (正子)。	۹ emission?
$A^{+}+e^{-} \rightarrow A$ $B^{2+}+2e^{-} \rightarrow B$ $C_{3}+3e^{-} \rightarrow 3C^{-}$ Which substance is the stroped of the stroped of the substance is the substance is the stroped of the substance is the substance is the stroped of the substance is the substance is the substance is the stroped of the subst	0.70 0.43 0.27 ngest reducing agent? C ⁻ represents ¹⁵ ₈ 0 decay by		
$A^{+}+e^{-} \rightarrow A$ $B^{2+}+2e^{-} \rightarrow B$ $C_{3}+3e^{-} \rightarrow 3C^{-}$ Which substance is the stroped of the stroped of the substance is the substance is the stroped of the substance is the substance is the stroped of the substance is the substance is the substance is the stroped of the subst	0.70 0.43 0.27 ngest reducing agent? C ⁻ represents ¹⁵ ₈ 0 decay by		
A ⁺ + e ⁻ →A B ²⁺ + 2 e ⁻ → B C ₃ + 3 e ⁻ → 3 C ⁻ Which substance is the stro A) A B) B C) C ₃ D) 29. Which reaction below A) ${}^{15}_{8}O \rightarrow {}^{-1}_{0}e + {}^{15}_{9}Ra$ B) ${}^{15}_{8}O \rightarrow {}^{-1}_{0}e + {}^{15}_{7}N$ C) ${}^{15}_{8}O \rightarrow {}^{-1}_{0}e + {}^{18}_{6}N$	0.70 0.43 0.27 ngest reducing agent? C ⁻ represents ¹⁵ ₈ 0 decay by		
A ⁺ + e ⁻ →A B ²⁺ + 2 e ⁻ → B C ₃ + 3 e ⁻ → 3 C ⁻ Which substance is the stro A) A B) B C) C ₃ D) 29. Which reaction below A) ${}^{15}_{8}O \rightarrow {}^{-1}_{0}e + {}^{15}_{9}Ra$ B) ${}^{15}_{8}O \rightarrow {}^{-1}_{0}e + {}^{15}_{9}Ra$ B) ${}^{15}_{8}O \rightarrow {}^{-1}_{0}e + {}^{15}_{9}N$ C) ${}^{15}_{8}O \rightarrow {}^{-1}_{0}e + {}^{18}_{6}N$ D) ${}^{15}_{8}O \rightarrow {}^{-1}_{0}e + {}^{18}_{8}N$ 30. If a sample of ²³³ Pa take	0.70 0.43 0.27 ngest reducing agent? C ⁻ represents ¹⁵ ₈ 0 decay by		
A ⁺ + e ⁻ →A B ²⁺ + 2 e ⁻ → B C ₃ + 3 e ⁻ → 3 C Which substance is the stro A) A B) B C) C ₃ D) 29. Which reaction below A) ${}^{15}_{8}O \rightarrow {}^{-1}_{0}e + {}^{15}_{9}Ra$ B) ${}^{15}_{8}O \rightarrow {}^{-1}_{0}e + {}^{15}_{9}Ra$ B) ${}^{15}_{8}O \rightarrow {}^{-1}_{0}e + {}^{15}_{9}N$ C) ${}^{15}_{8}O \rightarrow {}^{-1}_{0}e + {}^{18}_{6}N$ D) ${}^{15}_{8}O \rightarrow {}^{-1}_{0}e + {}^{18}_{8}N$ 30. If a sample of 233 Pa take half-life?	0.70 0.43 0.27 ngest reducing agent? C ⁻ represents ¹⁵ ₈ 0 decay by		

D) 195 days

注意:背面有試題

	普通化學類組別A7	共 <u>9</u> 頁	第 <u>9</u> 頁
	·		
	社管距(2501 后距工公)		
.	、計算題 (25%, 每題五分)		P. J.
[1].	How many grams of calcium chloride are needed to produce 10.0 g o	of potassiun	1 3
	chloride? (atomic weight Ca: 40, C:12, O:16, K:39, Cl:35	.5)	1
·	$CaCl_2(aq) + K_2CO_3(aq) \rightarrow 2 KCl(aq) + CaCO_3(aq)$		用
[2].	Balance the chemical equation given below, and calculate the volum	e of nitroge	n
· []·	monoxide gas produced when 8.00 g of ammonia is reacted with 9.0		
	25°C? The density of nitrogen monoxide at 25°C is 1.23 g/L.	• • • •	•
	\cdot \cdot \cdot	•	
	$___ NH_3(g) + ___ O_{2(g)} \rightarrow __ NO_{(g)} + __ H_2O_{(l)}$		
[3].	The following data shows hydrogen peroxide decomposes to water a	nd oxygen	
	according to the reaction below: $2 H_2O_{2(aq)} \rightarrow 2 H_2O_{(l)} + O_{2(g)}$. <i>.</i>	
Wh	at is the average rate of disappearance of $H_2O_2(aq)$ in M/s in the first 4	15.0 second	s of the
rea	tion if 1.00 L of H ₂ O ₂ reacts at 25°C and 1.00 atm pressure?		
	Time (s) O2 (g) Collected (mL)		
	0.0 0.0	·	
	450 1 200		
	45.0 2.00 90.0 4.00		
	90.0 4.00		
[4].	90.0 4.00	tant equal t	o 3.0 ×
[4].	90.0 4.00 135.0 6.00		
[4].	90.0 4.00 135.0 6.00 The second-order reaction 2 Mn(CO) ₅ \rightarrow Mn ₂ (CO) ₁₀ , has a rate cons		

 $PCI_5(g) \rightleftharpoons PCI_3(g) + CI_2(g)$

At 250°C, 0.250 M PCI₅ is added to a flask. If $K_c = 1.80$, what are the equilibrium concentrations of each gas?