以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:26 、訪客IP:18.216.99.18
姓名 李亭芳(Ting-Fang Li) 查詢紙本館藏 畢業系所 數學系 論文名稱
(The average of the number of r-periodic points over a quadratic number field.)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 在這篇論文中,我們要計算在一個二次的field extension上週期為 的點個數的平均值,其構想和方法主要是參考 [3] 和 [4] 這兩篇論文。我們利用兩種不同的方法去計算這一個平均值,Prime Number Theorem 和Group Action。第一個方法是先計算週期為 的點個數,再利用Prime Number Theorem去計算平均值。第二個方法是去討論這個平均值和Galois group 作用在這些點上的orbit個數間的關係,進而利用這樣的關係計算出此平均值。 摘要(英) In this paper, we compute the average of the number of r-periodic points
over a quadratic number ¯eld generalizing results in [3] and [4]. We use two
di®erent methods, the prime number theorem and group action, to compute
the average and compare the result. First method is to counte the number of
the primitive r-periodic points. After that we use the prime number theorem
to compute the average. And we discuss relationship between the average and
the number of orbits in the set of primitive r-periodic points under the Galois
action in the second method.關鍵字(中) ★ 動態系統 關鍵字(英) ★ p-adic 論文目次 Contents
1 Introduction 1
2 Counting the number of periodic points 2
3 The prime number Theory 6
4 limt!11¼K(t)Xp·tPr(h;K}) 7
4.1 K = Q(i) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 K = Q(w) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 K = Q(sqrt{q}) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5 ChebotarÄev's Density Theorem 29
6 Group Action 30
7 limt!11¼K(t)Xp·tPr(h;K}) again 34
Reference 39參考文獻 References
[1] Jean-Pierre Serre, On a Thoerem of Jordan, American Mathematical Society. V. 40,N 4.
[2] Neal Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-functions, Springer-Verlag.
[3] M. Nilsson, Monomial Dynamics in the Finite Field Extensions of the Fields of p-adic Numbers, London Mathematical Society.
[4] M. Nilsson and R. Nyqvist, The Asymptotic Number of Periodic Points of Discrete p-adic Dynamical Systems, Tr. Mat. Inst. Steklova 245 (2004), Izbr. Vopr. p-adich. Mat. Fiz. i Anal.; translation in Proc. Steklov Inst. Math. 2004,
[5] K. Chandrasekharan, An Intoduction to the Analytic Number Theory,Springer-
Verlag New York Inc, 1968.
[6] Serge Lang, Algebra, 3rd ed. Springer-Verlag.
[7] Serge Lang, Algebraic Number Theory, Springer-Verlag.
[8] Alain M. Robert, A course in p-adic Analysis, New York Springer-Verlag, 2000.
[9] Ireland Kenneth F. and Michael Rosen., A Classical Introduction to Modern Number Theory, 2nd edition, New York Springer-Verlag, 1982.
[10] P. Morton and P. Patel, The Galois theory of periodic points of polynomial maps, Proc. London Math. Soc. 68 (1994), 224-263.
[11] P. Stevenhagen and H.W. Jr. Lenstra, ChebotarÄev and his density Theorem, Math. Intell. 1996. V. 18, N 2.
[12] W. J. le Veque, Topics in Number Theory, Addison-Wesley Publishing co., Reading Mass., 1956. 39指導教授 夏良忠(Liang-Chung Hsia) 審核日期 2006-7-10 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare