博碩士論文 942201010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:109 、訪客IP:18.219.207.115
姓名 蔡銘璟(Min-Ching Tsai)  查詢紙本館藏   畢業系所 數學系
論文名稱 樹圖最大特徵值的討論
(On the spectral radius of trees)
相關論文
★ n 階置換Cayley 圖之研究★ 低維度Cayley圖之研究
★ 超立方體與其變形的覆蓋容器★ 路徑與圈嵌入有缺損的超立方體
★ On the Spectrum of Trees
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們討論根樹圖的譜值,並得到一些分類的結果
摘要(英) We discuss the spectrum of balanced rooted tree
關鍵字(中) ★ 樹圖
★ 特徵值
★ 譜值
關鍵字(英) ★ Bethe tree
★ balanced rooted tree
★ spectrum
★ spectral radius
論文目次 Chapter 0 Historical review and overview of the thesis 1
0.1 Historical review.............................1
0.2 Overview of the thesis........................2
Chapter 1 Preliminaries 3
1.1 Basic definitions on graph theory.............3
1.2 Preliminaries on the eigenvalue problem.......5
Chapter 2 Computation of the graph spectrum 8
2.1 Equitable partitions..........................8
2.2 Graphs with recursive structure..............11
2.3 Graph defined by some algebraic identity.....12
2.4 Eigenvector can be regarded as a harmonic function.....................................13
Chapter 3 Main results 15
3.1 Bethe tree B(k, n) and balanced rooted trees R(k_1,...,k_n)...............................15
3.2 Spectrum of R(k_1,...,k_n)...................16
3.3 The spectral radius of the long leg spider
Sp(k, n).....................................25
3.4 The spectral radius of the subgraphs of R(k,1)...............................27
Chapter 4 Possible Future Works 29
References 30
參考文獻 [1] T. H. Wei, The algebraic foundations of ranking theory. Thesis, Cambridge (1952).
[2] L. M. Lhxtehbaym, Characteristic values and a simple graph., Matem. Sezda, Journals, Vol.: 1 (1956) 135-136.
[3] L. Collatz, Spektren endlicher Grafen, Abh. Math. Sem. Univ. Hamburg 21(1957)
63–77.
[4] R.A. Brualdi, A.J. HoIman, On the spectral radius of a (0;1) matrix, Linear Algebra
Appl. 65 (1985) 133-146.
[5] R.P. Stanley, A bound on the spectral radius of graphs with e edges, Linear Algebra
Appl. 67 (1987) 267–269.
[6] Y. Hong, Upper bounds of the spectral radius of graphs in terms of genus, J. Combin.
Theory Ser. B 74 (1998) 153–159.
[7] A. Berman, X. D. Zhang, On the spectral radius of graphs with cut vertices, J. Combin.
Theory Ser. B 83 (2001) 233–240.
[8] Y. Hong, J. L. Shu, K. Fang, A sharp upper bound of the spectral radius of graphs, J.
Combin. Theory Ser. B 81 (2001) 177-183.
[9] J.L. Shu, Y. Wu, Sharp upper bounds on the spectral radius of graphs, Linear Algebra Appl. 377 (2004) 241–248.
[10] D. Cao, Bounds of eigenvalues and chramatic numbers, Linear Algebra Appl. 270 (1998) 1–13.
[11] K.Ch. Das, P. Kumar, Some new bounds on the spectral radius of graphs, Discrete Math. 281 (2004) 149–161.
[12] L. Collatz, U. Sinogowitz, Spektren Endlicher Grafen, Abh. Math. Sem. Univ. Hamburg 21 (1957) 63-77.
[13] R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge, preprint.
[14] Norman Biggs, Algebraic graph theory, Cambridge, Second Edition 1993.
[15] Douglas B. West, Introduction to Graph Theory, Prentice Hall, Second Edition 2001
[16] T.C. Hu, Combinatorial Algorithms , Addison-Wesley, 1982.
[17] J. M. Aldous and R. J. Wilson, Graphs and applications, Springer, 2001.
[18] I. N. Herstein and D. J. Winter, A primer on liner algebra, Macmillan, 1990.
[19] Dragos M. Cvetkovic, Spectra of graphs, Academic, 1980.
[20] Li-Cheng Hsu, On the Spectrum of Trees, Thesis of master, 2009.
[21] Ya-Jung Tseng, Constructing Strongly Regular Graphs from
D-bounded Distance-Regular Graphs, Thesis of master, 2008.
指導教授 黃華民(Hua-Min Huang) 審核日期 2009-6-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明