以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:33 、訪客IP:18.188.175.66
姓名 許至勇(Chih-Yung Hsu) 查詢紙本館藏 畢業系所 數學系 論文名稱 三角不等式與Jensen不等式之精化
(Refinements of triangle inequality and Jensen’s inequality)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 在這篇論文中,我們對於一個在Banach空間中的可積分向量值函數,證明了此函數具有 sharp triangle inequality 並且也證明了其三角不等式的reverse inequality, 這之中亦涵蓋了對於 n 個元素的特例,此特例是由 Kato 等學者所發表過的一個結果。此外我們也對一個在LP空間中的向量值函數,推廣了它另一種形式的三角不等式,我們的結果包含了對於兩個元素的特例。另外關於一個改良過的Jensen’s inequality 我們亦討論了其一些相關的性質。 摘要(英) In this thesis, we prove a sharp triangle inequality and its reverse inequality for strongly integrable functions with values in a Banach space X. This contains as a special case a recent result of Kato et al on sharp triangle inequality for n elements. We also discuss a generalized triangle inequality for Lp functions with values in X. It contains as a special case the triangle inequality of the second kind for two elements, which is implied by the Euler-Lagrange type identity. Besides, some properties related to a refined Jensen’s inequality are observed. 關鍵字(中) ★ 三角不等式 關鍵字(英) ★ triangle inequality
★ Jensen’s inequality論文目次 0. Abstract 1
1. Introduction 2
2. Sharp triangle inequality and it’s reverse for
functions 4
3. Refined Jensen’s inequality and related properties 14
4. Generalization of the triangle inequality of the second
kind 16
5. References 19參考文獻 [1] N. Dunford, J. T. Schwartz, Linear Operators, Part 1, Intersince Publishers,
Inc., New York, 1957.
[2] M. Kato, K.-S. Saito, and T. Tamura, Sharp triangle inequality and it’s
reverse in Banach space, Math. Inequal. Appl., 10 (2007), 451-460.
[3] J. M. Rassias, Soultions of the Ulam stability problem for Euler-Langrage
quadratic mappings. J. Math. Anal. 220 (1998), 613-639.
[4] J. Rooin, Some aspects of convex functions and their applications, J. Inequal.
Pure and Appl., 2 (2001), Art. 4.
[5] J. Rooin, A refinement of Jensen’s inequality, J. Inequal. Pure and Appl., 6
(2005), Art. 38.
[6] H. L. Royden, Real Analysis, 3rd ed., Prentice Hall, New Jersey, 1989.
[7] Sin-Ei Takahasi, J. M. Rassias, S. Saitoh, and Y. Takahashi, Refined generalizations
of the triangle inequality on Banach space, preprint.指導教授 蕭勝彥、高華隆
(Sen-Yen Shaw、Hwa-Long Gau)審核日期 2007-7-7 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare