參考文獻 |
[1] P. B. Bochev, Analysis of least-squares ¯nite element methods for the Navier-
Stokes equations, SIAM, J. Numer. Anal., 34 (1997), pp. 1817-1844.
[2] P. B. Bochev and M. D. Gunzburger, Analysis of least-squares ¯nite element
methods for the Stokes equations, Math. Comp., 63 (1994), pp 479-506.
[3] P. B. Bochev and M. D. Gunzburger, Finite element methods of least-squares
type, SIAM Rev., 40 (1998), pp 789-837.
[4] P. B. Bochev, Z. Cai, T. A. Manteu?el and S. F. McCormick, Analysis of
velocity-°ux ¯rst-order system least-squares principles for the Navier-Stokes
equations: Part I, SIAM J. Numer. Anal., 35 (1998), pp. 990-1009.
[5] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element
Methods, Springer-Verlag, New York, 1994.
[6] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-
Verlag, New York, 1991.
[7] Z. Cai, T. Manteu?el, and S. McCormick, First-order system least squares
for velocity-vorticity-pressure form of the Stokes equations, with application
to linear elasticity, ETNA, 3 (1995), pp. 150-159.
[8] Z. Cai, T. A. Manteu?el, and S. F. McCormick, First-order system least
squares for the Stokes equations, with application to linear elasticity, SIAM
J. Numer. Anal., 34 (1997), pp. 1727-1741.
[9] C. L. Chang, An error estimate of the least squares ¯nite element method for
the Stokes problem in three dimensions, Math. Comp., 63 (1994), pp. 41-50.
[10] C. L. Chang and B.-N. Jiang, An error analysis of least-squares ¯nite ele-
ment method of velocity-pressure-vorticity formulation for Stokes problem,
Comput. Methods Appl. Mech. Engrg., 84 (1990), pp. 247-255.
[11] C. L. Chang and J. J. Nelson, Least-squares ¯nite element method for the
Stokes problem with zero residual of mass conservation, SIAM J. Numer.
Anal., 34 (1997), pp. 480-489.
[12] C. L. Chang, S.-Y. Yang, and C.-H. Hsu, A least-squares ¯nite element
method for incompressible °ow in stress-velocity-pressure version, Comput.
Methods Appl. Mech. Engrg., 128 (1995), pp. 1-9.
[13] C. L. Chang and S.-Y. Yang, Analysis of the L2 least-squares ¯nite ele-
ment method for the velocity-vorticity-pressure Stokes equations with veloc-
ity boundary conditions, Appl. Math. Comput., 130 (2002), pp. 121-144.
24
[14] M.-C. Chen, B.-W. Hsieh, C.-T. Li, Y.-T. Wang, and S.-Y. Yang, A compar-
ative study of two iterative least-squares ¯nite element schemes for solving
the stationary incompressible Navier-Stokes equations, preprint, 2007.
[15] J. M. Deang and M. D. Gunzburger, Issues related to least-squares ¯nite
element methods for the Stokes equations, SIAM J. Sci. comput., 20 (1998),
pp. 878-906.
[16] H.-Y. Duan and G.-P. Liang, On the velocity-pressure-vorticity least-squares
mixed ¯nite element method for the 3D Stokes equations, SIAM J. Numer.
Anal., 41 (2003), pp. 2114-2130.
[17] M. Feistauer, Mathematical Methods in Fluid Dynamics, Longman Group UK
Limited, 1993.
[18] U. Ghia, K. N. Ghia, and C. T. Shin, High-Re solutions for incompressible
°ow using the Navier-Stokes equations and a multigrid method, J. Comput.
Phys., 48 (1982), pp. 387-411.
[19] V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes
Equations: Theory and Algorithms, Springer-Verlag, New York, 1986.
[20] B.-N. Jiang, The Least-Squares Finite Element Method, Springer-Verlag,
Berlin, 1998.
[21] S. D. Kim, Y. H. Lee, and S.-Y. Yang, Analysis of [H?1;L2;L2] ¯rst-order
system least squares for the incompressible Oseen type equations, Appl. Nu-
mer. Math., 52 (2005), pp. 77-88.
[22] C.-T. Li, Piecewise bilinear approximations to the 2-D stationary incompress-
ible Navier-Stokes problem by least-squares ¯nite element methods, Master
Thesis, May 2004, National Central University, Taiwan.
[23] C.-C. Tsai and S.-Y. Yang, On the velocity-vorticity-pressure least-squares
¯nite element method for the stationary incompressible Oseen problem, J.
Comp. Appl. Math., 182 (2005), pp. 211-232.
[24] S.-Y. Yang, Error analysis of a weighted least-squares ¯nite element method
for 2-D incompressible °ows in velocity-stress-pressure formulation, Math.
Meth. Appl. Sci., 21 (1998), pp. 1637-1654. |