姓名 |
張雅筑(Yea-jwu Chang)
查詢紙本館藏 |
畢業系所 |
數學系 |
論文名稱 |
血壓與交感神經活性訊號數學關係之探討 (A discussion of mathematical relations of blood pressure and sympathetic nerve signals)
|
相關論文 | |
檔案 |
[Endnote RIS 格式]
[Bibtex 格式]
[相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
|
摘要(中) |
觀察受刺激狀態下血壓與交感神經兩生物訊號,採用阻尼函數與方盒函數分別來模擬此兩生物訊號,並利用數學模型找出其對應的參數,根據這些參數去討論在不同刺激頻率下,頻域為0至1Hz兩數學模型比值之對數關係,使用最小平方法求得直線關係。且利用此直線去分析在不同的刺激強度或不同的刺激時間下,對此直線關係的影響為何。並定義方盒函數的振幅倍率α與阻尼函數的振幅倍率f(α)為非線性關係,方盒函數與阻尼函數的持續時間關係為線性。本研究針對相同的刺激強度、不同刺激強度、相同刺激時間,以及不同刺激時間等各種情況下分析直線關係的改變,並得知在改變刺激強度時,則直線關係的y截距亦隨之改變,且α在0.8至1.4之間,當α值愈大,y截距愈大;改變阻尼函數的持續時間時,則改變了直線關係的斜率變化,當阻尼函數持續時間β愈大,斜率也愈大。且發現不同的方盒函數持續時間,所對應的交會點,隨著持續時間愈大而愈接近頻率小的地方。 |
摘要(英) |
The blood pressure and sympathetic nerve in the stimulated state were observed. We used the damping function and box function to simulate those two signals respectively, and experimented data were used to find the parameters of two mathematical models. Using the resulted parameters, we discussed the relationship between two mathematical models at the frequencies between 0 and 1 Hz with different stimulated frequencies. The least square method was used to determine the linear relation. We defined that the relation of amplitude of the box function and damping function to be nonlinear, and the relation of duration of the box function and damping function to be linear. Finally, we found that the y-intercept of the line obtained by the least square method changes when the stimulation intensity changes, while the slope changes when the duration of damping function changes. |
關鍵字(中) |
★ 交感神經 ★ 阻尼函數 ★ 方盒函數 ★ 血壓 |
關鍵字(英) |
★ damping function ★ blood pressure ★ sympathetic nurve ★ box function |
論文目次 |
1 緒論 1
1.1 生物訊號來源與背景紹. . . . . . . . . . . . . . . . . .1
1.2 研究動機 . . . . . . . . . . . . . . . . . . . . . 2
2 血壓與交感神經訊號之數學模型 4
2.1 原始訊號之基本理. . . . . . . . . . . . . . . . . . . 4
2.2 模擬血壓訊號之數學型. . . . . . . . . . . . . . . . . 5
2.2.1 阻尼函數模型試驗. . . . . . . . . . . . . . . . . . 6
2.2.2 阻尼函數模型與血壓訊號比較. . . . . . . . . . . . . 7
2.3 模擬交感神經訊號之數學模型. . . . . . . . . . . . . . 9
2.4 模擬血壓及交感神經訊號之數學模型的頻域對應值關係. . . 11
3 血壓與交感神經訊號之數學模型關係探討 19
3.1 相同刺激強度下,兩數學模型之關係. . . . . . . . . . . 19
3.1.1 改變刺激強度造成之影響. . . . . . . . . . . . . . . 20
3.1.2 改變持續時間造成之影響. . . . . . . . . . . . . . . 21
3.2 模擬未受刺激狀態下的自然狀態. . . . . . . . . . . . . 24
3.2.1 模擬不同刺激強度的影響. . . . . . . . . . . . . . . 24
3.2.2 模擬不同刺激時間的影響. . . . . . . . . . . . . . . 25
3.3 模擬不同刺激強度與刺激時間所造成的影響. . . . . . . . 28
4 討論 35
參考文獻 38
附錄 39 |
參考文獻 |
[1] Heart Disease and Stroke Statistics-2006 Update, American Heart Association, 2006 。
[2] Tsai, M.L., L.W. Chu, C.Y. Chai, and C.-T. Yen, ”Frequency dependent sympathetic modulation of vasomotor tone in the anesthetizedrat ”,Neurosci. Lett. 221:109-112, 1997.
[3] 王錫崗等譯,人體生理學,新文京開發出版股份有限公司,2004 。
[4] 陳柏成,p血壓與交感神經活性訊號關係的數學模型y,國立中央大學,碩士論文,2004 。
[5] 蔡孟利,p血壓功率頻譜中之交感神經活性訊息y,國立台灣大學,博士論文,1997 。 |
指導教授 |
單維彰(Wei-Chang Shann)
|
審核日期 |
2007-7-17 |
推文 |
facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu
|
網路書籤 |
Google bookmarks del.icio.us hemidemi myshare
|