參考文獻 |
[1] H. Berestycki, F. Hamel, Front propagation in periodic excitable media, Comm. Pure Appl. Math. 55 (2002), 949-1032.
[2] H. Berestycki, F. Hamel, N. Nadirashvili, The speed of propagation for KPP type problems. I -Periodic framework, J. Europ. Math. Soc. (2005), to appear.
[3] H. Berestycki, F. Hamel, L. Roques, Analysis of the periodically fragmented environment model: I - Influence of periodic heterogeneous environment on species persistence, J. Math. Biol. (2005), to appear.
[4] H. Berestycki, F. Hamel, L. Roques, Analysis of the periodically fragmented environment model: II - Biological invasions and pulsating travelling fronts, J. Math. Pures Appl. (2005), to appear.
[5] X. Chen, J.-S. Guo, Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations, J. Differential Equations 184 (2002), 549-569.
[6] X. Chen, J.-S. Guo, Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics, Math. Ann. 326 (2003), 123-146.
[7] S.N. Chow, J. Mallet-Paret, W. Shen, Travelling waves in lattice dynamical systems, J. Differential Equations 149 (1998), 249-291.
[8] T. Erneux, G. Nicolis, Propagation waves in discrete bistable reactiondiffusion systems, Physica D 67 (1993), 237-244.
[9] G. F´ath, Propagation failure of traveling waves in a discrete bistable medium, Physica D 116 (1998), 176-190.
[10] P.C. Fife, Mathematical aspects of reacting and diffusing systems, Lecture Notes in Biomathematics 28, Springer Verlag, 1979.
[11] R.A. Fisher, The advance of advantageous genes, Ann. Eugenics 7 (1937), 335-369.
[12] M.I. Freidlin, Limit theorems for large deviations and reaction-diffusion equations, Ann. Probab. 13 (1985), 639-675.
[13] J. Gartner, M.I. Freidlin, On the propagation of concentration waves in periodic and random media, Soviet Math. Dokl. 20 (1979), 1282-1286.
[14] J.-S. Guo and F. Hamel, Front propogation for discrete periodic monostable equations, Math. Ann. 335 (2006), 489-525.
[15] R. A. Horn, C. R. Johnson, Matrix analysis, Cambridge University Press, 1985.
[16] C.-H. Hsu, S.-S. Lin, Existence and multiplicity of traveling waves in a lattice dynamical system, J. Differential Equations 164 (2000), 431-450.
[17] W. Hudson, B. Zinner, Existence of traveling waves for a generalized discrete Fisher’s equation, Comm. Appl. Nonlinear Anal. 1 (1994), 23-46.
[18] W. Hudson, B. Zinner, Existence of travelling waves for reaction-dissusion equations of Fisher typein periodic media, In: Boundary Value Problems for Functional Differential Equations, J. Henderson (ed.), World Scientific, 1995, pp. 187-199.
[19] J.P. Keener, Propagation and its failure in coupled systems of discrete excitable cells, SIAM J. Appl. Math. 47 (1987), 556-572.
[20] A.N. Kolmogorov, I.G. Petrovsky, N.S. Piskunov, ´Etude de l’´equation de la diffusion avec croissance de la quantit´e de mati`ere et son application `a un probl´eme biologique, Bull. Universit´e d’´Etat `a Moscou, Ser. Int., Sect. A. 1 (1937), 1-25.
[21] J. Mallet-Paret, The Fredholm alternative for functional differential equations of mixed type, J. Dyn. Differential Equations 11 (1999), 1-48.
[22] J. Mallet-Paret, The global structure of traveling waves in spatial discrete dynamical systems, J. Dyn. Differential Equations 11 (1999), 49-127.
[23] N. Shigesada, K. Kawasaki, Biological invasions: theory and practice, Oxford Series in Ecology and Evolution, Oxford, Oxford University Press, 1997.
[24] N. Shigesada, K. Kawasaki, E. Teramoto, Traveling periodic waves in heterogeneous environments, Theor. Popul. Biology 30 (1986), 143-160.
[25] B. Shorrocks, I.R. Swingland, Living in a Patch Environment, Oxford University Press, New York, 1990.
[26] J. Smoller, Shock waves and reaction diffusion equations. Springer-Verlag, Berlin, New York, 1983.
[27] J. Wu, X. Zou, Asymptotical and periodic boundary value problems of mixed FDEs and wave solutions of lattice differential equations, J. Differential Equations 135 (1997), 315-357.
[28] X. Xin, Existence and stability of travelling waves in periodic media governed by a bistable nonlinearity, J. Dynamics Diff. Equations 3 (1991), 541-573.
[29] X. Xin, Existence of planar flame fronts in convective-diffusive periodic media, Arch. Rational Mech. Anal. 121 (1992), 205-233.
[30] X. Xin, Existence and nonexistence of traveling waves and reactiondiffusion front propagation in periodic media, J. Stat. Physics 73 (1993), 893-925.
[31] J.X. Xin, Existence of multidimensional traveling waves in tranport of reactive solutes through periodic porous media, Arch. Rational Mech. Anal. 128 (1994), 75-103.
[32] J. Xin, Front propagation in heterogeneous media, SIAM Review 42 (2000), 161-230.
[33] H.F. Weinberger, On spreading speeds and traveling waves for growth and migration in periodic habitat, J. Math. Biol. 45 (2002), 511-548.
[34] B. Zinner, Existence of traveling wavefront solutions for the discrete Nagumo equation, J. Differential Equations 96 (1992), 1-27.
[35] B. Zinner, G. Harris, W. Hudson, Traveling wavefronts for the discrete Fisher’s equation, J. Differential Equations 105 (1993), 46-62. |