摘要(英) |
Due to a practically resource sharing problem, we consider a variation of the domination problem in this thesis which we call the distance-two domination problem.
This thesis is organized as follows. Section 1 gives basic definitions and notation. Section 2 investigates the distance-two domination of (n;1,2). Section 3 investigates the distance-two domination of (n;1,3). Section 4 investigates the distance-two domination of (n;1,n/2). We provide the integer programming method to canvass r_3,2,1(G) in the final section.
|
參考文獻 |
References
[1] B. Alspach and T. D. Parsons, Isomorphism of circulant graphs and digraphs,
Discrete Mathematics 25 (1979), 97-108.
[2] F. Boesch and R. Tindell, Circulants and Their Connectivities, Journal of
Graph Theory 8 (1984), 487-499.
[3] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Domination in Graphs:
Advanced Topices, Marcel Dekker, NY (1998).
[4] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domination
in Graphs, Marcel Dekker, NY (1998).
[5] T. W. Haynes and P. J. Slater, Paired-domination in graphs, Networks 32
(1998), 199-206.
[6] F. R. Hsu, Distance-two domination of graphs, Master Thesis, National Central
University (2006).
[7] S. H. Huang, F. K. Hwang, and Y. H. Liu, Equivalent Double-Loop Networks,
Taiwanese Journal of Mathematics 4 (2000), 661-668.
[8] F. K. Hwang, A complementary survey on Double-Loop Network, Theoretical
Computer Science 263 (2001), 211-229.
[9] F. K. Hwang, P. E. Wright, and X. D. Hu, Exact Reliabilities of Most Reliable
Double-Loop Networks, Networks 30 (1997), 81-90.
[10] J. S. Lee, J. K. Lan, and C. Y. Chen, On Degenerate Double-Loop L-shapes,
Journal of Interconnection Networks 7 (2006), 195-215.
[11] D. B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ (2001).
|