博碩士論文 104322016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:3.135.195.249
姓名 呂捷宏(JIE-HONG LU)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 應用多項式滾動支承於不等高橋墩橋梁之研究
相關論文
★ 隔震橋梁含防落裝置與阻尼器之非線性動力反應分析研究★ 橋梁碰撞效應研究
★ 應用位移設計法於雙層隔震橋之研究★ 具坡度橋面橋梁碰撞效應研究
★ 橋梁極限破壞分析與耐震性能研究★ 應用多項式摩擦單擺支承之隔震橋梁研究
★ 橋梁含多重防落裝置之極限狀態動力分析★ 強震中橋梁極限破壞三維分析
★ 隔震橋梁之最佳化結構控制★ 跨越斷層橋梁之極限動力分析
★ 塑鉸極限破壞數值模型開發★ 橋梁直接基礎搖擺之極限分析
★ 考量斷層錯動與塑鉸破壞之橋梁極限分析★ Impact response and shear fragmentation of RC buildings during progressive collapse
★ 應用多項式滾動支承之隔震橋梁研究★ Numerical Simulation of Bridges with Inclined
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 由於摩擦單擺支承(Friction Pendulum System, FPS)於近域震波下易發生共振現象,為改善此一情況,本研究使用多項式滾動支承(Polynomial Rocking Bearing, PRB),其曲面函數為六次多項式,回復力曲線可分為軟化段與硬化段兩區段;軟化段可降低結構物加速度反應,硬化段可避免結構物產生過大位移。此外,PRB可透過幾何參數之調整,改變等效水平摩擦係數,摩擦材的選定相對容易。過去研究已證實PRB具有變頻特性,於近域與遠域震波皆發揮良好隔震效果。
本研究針對PRB不等高橋墩隔震橋梁進行數值模擬,並以目標橋梁之振動台實驗驗證數值分析方法之準確性,結果顯示分析方法可有效模擬目標橋梁之動力行為。此外,採用PSO-SA混合式演算法,針對振動台實驗模型,搜尋最佳化支承參數,並由試驗結果比對證實,結構物反應皆能有效達到設定目標之優化效果。
摘要(英) The Friction Pendulum System (FPS) may lead isolated structures to resonate with the near-fault ground motion. In order to improve this situation, this study uses Polynomial Rocking Bearing (PRB), whose surface is defined by a sixth-order polynomial function, and the restoring force curve can be divided into two sections: softening section and hardening section. The softening section can reduce the acceleration response of the structure while the hardening section can avoid excessive displacement of the structure. In addition, the PRB can change the equivalent horizontal friction coefficient by adjusting the geometric parameters, so the selection of the friction material is relatively easy. It has been proven that PRB is able to effectively mitigate the structural seismic response induced by either long period near-fault earthquakes or far- fault ground motion.
This study establishes a numerical model for a PRB isolated bridge with columns of irregular heights and conducts the series of the shaking table tests. The results show that the numerical analysis used in this study does simulates the results of experiments. In addition, the optimal parameters of PRB are found out by using PSO-SA hybrid algorithm, then the comparison of the test results confirmed that the structural seismic response can effectively achieve the optimization effect of the objective setting.
關鍵字(中) ★ 滾動支承
★ 不等高橋墩橋梁
★ 振動台實驗
★ 混合式參數搜尋法
關鍵字(英)
論文目次 目錄
摘要 I
ABSTRACT II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 IX
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 3
1.2.1 變頻式隔震支承 3
1.2.2 不等高橋墩橋梁 5
1.3 研究內容 6
第二章 多項式滾動支承 8
2.1 前言 8
2.2 支承力學行為 9
2.3 多項式滾動支承曲面函數與等效水平摩擦係數 14
第三章 數值分析模型與分析方法 19
3.1 橋梁數值分析模型 19
3.2 運動方程式推導 20
3.3 支承狀態判定 23
3.3.1 全部支承靜止狀態 26
3.3.2 全部支承滑動狀態 26
3.3.3 部分支承滑動狀態 27
第四章PRB最佳化設計 31
4.1 PSO-SA混合式搜尋法 31
4.1.1 最佳化問題數學模式之建立 31
4.1.2 粒子群演算法(Particle Swarm Optimization, PSO) 32
4.1.3 模擬退火法(Simulated Annealing,SA) 35
4.1.4 PSO-SA混合式搜尋法 36
4.2 實驗支承設計 37
4.2.1 PRB參數搜尋 38
4.2.2 PSO-SA目標函數設定 38
4.2.3 最佳參數搜尋支承選定 40
第五章 橋梁模型振動台實驗 51
5.1 實驗設備與實驗試體 52
5.2 實驗測量儀器及配置 53
5.3 實驗試體系統識別 54
5.4 輸入震波 55
5.5 振動台實驗結果及討論 57
5.5.1 實驗結果與數值模擬之比對 57
5.5.2 案例一與案例二之比較及探討 60
第六章 結論與建議 124
6.1 結論 124
6.2 建議及未來研究方向 125
參考文獻 127
附錄 A 135
附錄 B 141
參考文獻 7 參考文獻
1. Asher, J. W., S. N. Hoskere, R. D. Ewing, D. R. Van Volkinburg, R. L. Mayes and M. Button “Seismic performance of the base isolated USC University Hospital in the 1994 Northridge earthquake.” ASME, Pressure Vessels and Piping Division (Publication) PVP, Seismic, Shock, and Vibration Isolation, 139: 147-154. (1995).
2. Bozorgnia, Y., S. A. Mahin and A. G. Brady “Vertical response of twelve structures recorded during the Northridge earthquake,” Earthquake Spectra, 14(3), August, 411-432. (1998).
3. Celebi, M. “Successful performance of a base-isolated hospital building during the 17 January 1994 Northridge earthquake.” Structural Design of Tall Buildings, 5(2):95-109. (1996).
4. Fujita, T. “Seismic isolation of civil buildings in Japan.” Progress in Structural Engineering and Materials, 1( 3), 295-300. (1998).
5. Kelly, J. M. “Seismic isolation of civil buildings in USA.” Progress in Structural Engineering and Materials, 1(3), 279-285. (1998).
6. Martelli, A. and M. Forni “Seismic isolation of civil buildings in Europe.” Progress in Structural Engineering and Materials, 1(3), 286-294. (1998).
7. Basöz, N. I. and Kiremidjian, A. S. “Evaluation of bridge damage data from the Loma Prieta and Northridge, CA earthquakes.” Technical Report MCEER-98-0004, Multidisciplinary Center for Earthquake Engineering Research, Buffalo, New York, 1-35 (1998).
8. Basöz N. I. and et al. “Statistical Analysis of Bridge Damage Data from the 1994 Northridge, CA Earthquake.” Earthquake Spectra, 15(1), 25-54. (1999).
9. Bruneau, M., Wilson, J. C., and Tremblay, R. “Performance of steel bridges during the 1995 Hyogoken-Nanbu (Kobe, Japan) earthquake.” Canadian Journal of Civil, 23(3), 678-713. (1996).
10. Otsuka, H. and et al. “Report on the Disaster Caused by the 1995 Hyogoken Nanbu Earthquake, Chapter 5, Damage to Highway Bridges.” Journal of Research, Public Works Research Institute, 33. (1997).
11. Kawashima, K. “Damage of bridge resulting from fault rupture in the 1999 KOCAELI and DUZCE, Turkey earthquakes and the 1999 Chi-Chi, Taiwan earthquake.” Structural Engineering/Earthquake engineering, JSCE, 19(2), 179-197. (2002).
12. Kosa, K. and et al. “Mechanism of Damage to Shiwei Bridge Caused by 1999 Chi-Chi Earthquake.” A Workshop on Seismic Fault-induced Failures, 143-154. (2001).
13. Lee, G. C. and Loh, C. “Preliminary report from MCEER-NCREE workshop on the 921 Taiwan earthquake.” Multidisciplinary Center for Earthquake Engineering Research, Buffalo, New York. (1999).
14. Ghobarah, A. and Ali, H. M. “Seismic performance of highway bridges.” Engineering Structures, 10(3), 157-166. (1988).
15. K. Kawashima, “SEISMIC ISOLATION OF BRIDGES IN JAPAN”, Department of Civil Engineering, Tokyo Institute of Technology.
16. 唐治平,陳全和,「隔震橋梁位移控制」,結構工程,第八卷,第三期,pp.19-32,(1993)。
17. 唐治平,李維森,柯孝勳,「橋梁結構耐震、隔震及減震技術之應用研究」,結構工程,第十七卷,第二期,pp.33-52,(2002)。
18. Vasant A. Matsagar and R.S. Jangid, “Seismic Response of Simply Supported Base-Isolated Bridge with Different Isolators”, International Journal of Applied Science and Engineering, vol. 1, pp.53-69. (2006)
19. Bukle, I. G. and Mayes, R. L. “Seismic Isolation History, Application, and Performance-A World View.” Earthquake Spectra, 6(2), 161-201. (1990).
20. 張國鎮,黃震興,蘇晴茂,李森枂,「結構消能減震控制及隔震設計」,全華科技圖書,第七章,pp.7-2~7-32,(2005)。
21. Symans, Michael D. “Seismic protective systems: seismic isolation. ”Instructional Material Complementing FEMA 451 (2009) .
22. Naeim, F. and J. M. Kelly “Design of Seismic Isolated Structures”, Chapter 4, John Wiley & Sons, Inc., New York (1999).
23. Koh, C. G. and Kelly, J. M. “A simple mechanical model for elastomeric bearings used in base isolation.” International Journal of Mechanical Sciences, 30(12), 933-943. (1988).
24. 陳志宗“近斷層地震動的反應特性”,國立台北科技大學土木與防災所碩士論文(2006)。
25. Maniatakis, Ch A., I. M. Taflampas, and C. C. Spyrakos. "Identification of near-fault earthquake record characteristics." The 14th world conference on earthquake engineering Beijing, China, October. (2008.)
26. 張婉妮“近斷層震波對滑動隔震結構之影響”,高雄第一科技大學營建工程系碩士論文(2001)。
27. Liao, W. I., C. H. Loh and S. Wan “Responses of isolated bridges subjected to near-fault ground motions recorded on Chi-Chi earthquake,” International Workshop on Annual Commemoration of Chi-Chi Earthquake, Sep 18-20, Taipei, 371-380. (2000).
28. 盧煉元、施明祥、曾旭玟、吳政彥 “滑動隔震支承之研發與其受近斷層震波行為之實驗探討”,結構工程,第十二卷,第三期29-59頁 (2005)。
29. Pranesh, M. and Sinha, R. “VFPI: an isolation device for aseismic design.” Earthquake Engineering and Structural Dynamics, 29(5), 603-627. (2000)
30. Lu, L. Y., Shih, M. H., and Wu, C. Y. “Near-fault seismic isolation using sliding bearings with variable curvatures.” 13th World Conference on Earthquake Engineering, Vancouver, Canada, No. 3264. (2004).
31. 吳政彥“變曲率滑動隔震結構之實驗與分析”,高雄第一科技大學營建工程系碩士論文(2004)。
32. 王健“變曲率滑動隔震防制近斷層震波之實驗與分析”,高雄第一科技大學營建工程系碩士論文(2006)。
33. Lu, L. Y., J. Wang, S. W. Yeh “Experimental verification of polynomial friction pendulum isolator for near-fault seismic isolation” The 4th International Structural Engineering and Construction Conference (ISEC-4), September 26-28, Melbourne, Australia, pp. 1065-1071. (2007).
34. Lu, L. Y., T. Y. Lee, S. W. Yeh “An experimental study on sliding isolators with variable curvature” Earthquake Engineering and Structural Dynamics, 40, 1609-1627. (2011).
35. 董佩宜 “應用多項式摩擦單擺支承之隔震橋梁研究” ,國立中央大學土木系碩士論文(2010)。
36. 方嬿甄 “考量垂直向效應之多項式摩擦單擺支承之分析與設計” ,國立中央大學土木系碩士論文(2010)。
37. 曹哲瑋 “應用多項式摩擦單擺支承於不等高橋墩橋梁之研究”. ,國立中央大學土木系碩士論文(2016)。
38. 葉奕麟“搖擺式隔震支承之理論與實驗研究”,高雄第一科技大學營建工程系碩士論文(2008)。
39. 盧煉元,李姿瑩,葉奕麟,張洵 “變頻式搖擺支承於近域隔震之運用”,中國土木水利工程學刊,第二十二卷,第三期283-298頁(2010)。
40. 曾靖紘 “應用多項式滾動支承之隔震橋梁研究” ,國立中央大學土木系碩士論文(2013)。
41. Calvi, G. M., A. S. Elnashai, and A. Pavese. “Influence of regularity on the seismic response of RC bridges.” Proceedings of the 2nd International Workshop on Seismic Design and Retrofitting of RC Bridges. (1994).
42. Tehrani, Payam. “Seismic behaviour and analysis of continuous reinforced concrete bridges”. Diss. McGill University Libraries, (2012).
43. Chen, W.F. and Duan, L. Bridge Engineering Handbook, CRC Press LLC. (2000).
44. Priestley, M.J.N., Seible, F., and Calvi, G.M. “Seismic design and retrofit of bridges” John Wiley and Sons, New York. (1996).
45. Calvi, G.M., and Pavese, A. “Conceptual design of isolation systems for bridge structures.” Journal of Earthquake Engineering, 1(1): 193-218. (1997).
46. Wang, Y. P., Chung, L. L., Liao, W. H. “Seismic response analysis of bridges isolated with friction pendulum bearing.” Earthquake Engineering and Structural Dynamics, 27, 1069-1093. (1998).
47. 王睿恩“不等高橋墩橋梁含多項式滾動支承之動力分析”,國立中央大學土木工程學系碩士論文(2017)。
48. 莊玟珊“PSO–SA 混合搜尋法與其他結構最佳化設計之應用”,國立中央大學土木工程學系碩士論文(2007)。
49. Kutz, Myer, Mechanical Engineer’s Handbook, John Wiley & Sons, New York, pp.242-244(1998).
50. Deb, K., Gulati, S., and Chakrabarti, S. “Optimal Truss-Structure Design Using Real-Coded Genetic Algoritms.” Proceedings of the Third Annual Conference, 479−486. (1998).
51. Kennedy, J. and Eberhart, R. C. “Particle swarm optimization.” Proceedings of IEEE International Conference on Neural Networks, Perth, Australia, vol. 4, 1942-1948. (1995).
52. Eberhart, R. C. and Kennedy, J. “A new optimizer using particle swarm theory.” Proceedings of the Sixth International Symposium on Micro machine and Human Science, Nagoya, Japan, 39-43. (1995).
53. Eberhart, R. C. and Shi, Y. H. “Particle swarm optimization: developments, applications and resources.” Proceedings of IEEE International Conference on Evolutionary Computation, Seoul, Korea, vol. 1, 81-86. (2001).
54. Fourie, R. C. and Groenwould, A. A. “The particle swarm optimization algorithm in size and shape optimization.” Structural and Multidisciplinary Optimization, 23, 259-267. (2002).
55. Kirkpatrick, S. ,Gelatt, C. D., and Vecchi, M. P. “Optimization by Simulated Annealing.” Science, 220, No. 4598, 671-680. (1983).
56. Corana, A., Maechesi, M.,Martini, C., and Ridella, S. “Minimizing Multimodal Functions of Continuous Variables with the Simulated Annealing Algorithm.” ACM Transactions on Mathematical Software, 13(3), 262-280. (1987).
指導教授 李姿瑩 審核日期 2018-9-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明