博碩士論文 105322005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:66 、訪客IP:3.15.239.50
姓名 顏昱丞(Yu-Cheng Yen)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 動態加載下的等效單軸應變與 應力材料組成模型
(Equivalent Uniaxial Strain And Stress Material Constitutive Model Under Dynamic Loading)
相關論文
★ 貼片補強構件之層間應力分析★ 軌道不整檢測及識別方法
★ 混凝土結構分析之三維等效單軸組成材料模型★ 卵形顆粒法向與切向接觸之等效線性彈簧值之推導與驗證
★ 以四面體離散化多面體系統之接觸分析與模擬★ 軌道車輛三維動態脫軌係數之在線量測理論
★ 向量式DKMT厚殼元推導與模擬★ 向量式預力混凝土二維剛架元之數值模擬與驗證
★ 向量式有限元應用於懸索橋非線性動力分析★ 蛋形顆粒群之流固耦合分析
★ 複合版梁元素分析模型之橋梁動態識別法★ 三維等效單軸應變與應力之材料組成模型
★ 人行吊橋的現有內力評估及動力分析★ 薄殼結構非線性運動之向量式有限元分析法
★ 雷射掃描技術於鋼軌磨耗之檢測★ PISO三維流體動力學之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究提出的動態加載下的三維等效單軸應變與應力組成模型,目的是研究混凝土材料動態加載下的行為,因為日常生活中結構物大多數都是受到動態加載如地震、撞擊和爆炸等現象。
本研究引用Darwin & Pecknold提出的等效單軸應變概念,分離材料多軸受力時的柏松比效應(Poisson’s ratio),且透過單軸行為預測多軸行為,在本研究的
數值模擬方法中以全量應變做計算,而非傳統塑性力學中分為塑性應變和彈性應變,簡化了混凝土在塑性行為分析中許多積分及複雜的數學計算。材料模型中主要分為兩個部分,分別為材料破壞模型(Ultimate failure model),及單軸應力應變曲線(Uniaxial stress strain model)。
單軸應力應變模型採用Saenz所提出的單軸應力應變公式,此公式僅需定義極限強度參數即可描述混凝土行為中之硬化段與軟化段,在數值模擬的使用上相當簡潔且方便。
本研究提出動態材料破壞模型,採用Menetrey和Willam所提出之三參數破壞準則與Balan等人所提出的帽蓋模型結合形成了Close-Menetrey-Willam模型。並透過動態增量因子(Dynamic Increase Factor)使破壞模型擴張,建立不同應變率加載狀態下之動態破壞模型,將不同時刻下之應力狀態於動態材料破壞模型上定義當前時刻之極限強度參數(Ultimate strength parameters)。
本研究提出老劣化模型,採用杜建民提出的劣化強度公式與Close-Menetrey-Willam模型結合使得模型縮減,建立不同損傷程度下的劣化破壞模型,定義在劣化模型上的極限強度參數,將其帶入單軸應力應變模型中進行預測。
本研究之模型維持一貫之數值計算流程,只需修改動態材料破壞模型以及單軸應力-應變破壞模型即可,本研究之數值算例分別驗證了混凝土高應變率和低應變率加載的情形、冰塊低應變率加載的情形且考慮不同溫度下的冰塊應變率加載和混凝土硫酸鹽劣化的加載。
摘要(英) This research presents a dynamic three-dimensional constitutive model of material equivalent uniaxial strain and stress. The purpose is to study the behavior of concrete materials under dynamic loading, because most of the structures in daily life are subject to dynamic loading such as earthquakes, impacts and explosions.
This research uses the equivalent uniaxial strain concept proposed by Darwin & Pecknold to separate the Poisson′s ratio of multi-axial forces. The equivalent uniaxial strain is a fictitious material index which is invented to compute the parameters such as material stiffness modulus and Poisson’s ratio.
This research proposes a dynamic material failure model, which combines the three-parameter failure criterion proposed by Menetrey and Willam with the cap model proposed by Balan et al. to form the Close-Menetrey-Willam model. The dynamic failure model is expanded by the DIF (Dynamic Increase Factor). The dynamic failure model under different strain rate loading states is established, and the stress state at different moments on the dynamic material failure model to define the ultimate strength parameters at the current moment.
Using the uniaxial stress-strain model proposed by Saenz, this formula only needs to define the ultimate strength parameters to describe the hardened and softened sections in concrete behavior. It is quite simple and convenient to use in numerical simulation.
This study proposes a concrete deterioration model. The combination of the concrete deterioration strength formula proposed by Du Jian-min and the Close-Menetrey-Willam model, establishes a deterioration model with different damage levels, defines the ultimate strength parameters of deterioration model.
The numerical examples in this study verify the high strain rate, low strain rate loading of concrete, low strain rate loading of ice, the low strain rate loading of ice at different temperatures and concrete deterioration.
關鍵字(中) ★ 等效單軸應變
★ 非線性分析
★ 混凝土動態加載
★ 材料破壞模型
★ 冰塊材料
★ 動態模型
★ 劣化模型
關鍵字(英) ★ Equivalent uniaxial strain
★ nonlinear analysis
★ dynamic loading of concrete
★ material failure model
★ ice material
★ dynamic model
★ deterioration model
論文目次 第一章 前言 1
1.1研究動機與目的 1
1.2研究方法與內容 2
第二章 文獻回顧 5
2.1靜態混凝土材料組成律模型 6
第三章 三維高應變率模型 27
3.1高應變率混凝土動態試驗 27
3.2高應變率混凝土動態破壞模型修正 36
第四章 三維低應變率模型 46
4.1混凝土材料低應變率下單軸應力-應變關係 46
4.2混凝土材料低應變率下材料破壞模型修正 49
4.3混凝土材料低應變率下應變率影響修正 62
第五章 冰塊材料的等效單軸應變模型 68
5.1冰塊材料的特性 68
5.2冰塊材料單軸應力應變模型 71
5.3冰塊溫度對壓力強度的影響 82
第六章 不同水養護時間和劣化的混凝土破壞模型 86
6.1不同水養護天數的混凝土單軸應力-應變關係 87
6.2劣化的混凝土 93
6.3受到硫酸鹽侵蝕後的混凝土退化模型 99
6.4混凝土退化模型的多軸預測 105
結論與建議 110
參考文獻 112
附錄A 一維波傳效應 116
附錄B 軟化模型 119
附錄C 動態帽蓋模型 127
參考文獻 [1]You-Lun Lin. (2017). A Three-Dimensional Equivalent Uniaxial Strain and Stress Constitutive Model. Master Thesis. National Central university department of civil engineer.
[2]Ling-Yuan Chang. (2009). Nonlinear Analysis of Reinforced Concrete Structures by the VFIFE Method. Master Thesis. National Central university department of civil engineer.
[3]Yu-Ju Lai (2014). 3D Concrete Material Model with Concept of Equivalent Uniaxial Strain. Master Thesis. National Central university department of civil engineer.
[4]Shang-Ta Lee (2016) 3-D Equivalent Uniaxial Strain of Concrete Material Constitutive Model. Master Thesis. National Central university department of civil engineer.
[5]Darwin, David.David A. Pecknold, ASCE. (1976).” Analysis of RC Shear Panels Under Cyclic Loading. Journal of the Structural Division”, 1976, Vol. 102, Issue 2, Pg. 355-369.
[6]Menetrey, P.K. J. Willam. (1995). “Triaxial Failure Criterion for Concrete and Its Generalization”. ACI Structural Journal, Title no. 92-S30.
[7]Balan, Toader A. Filip C. Filippou. Egor P. Popov. (1997). “Constitutive Model for 3D Cyclic Analysis of Concrete Structures”. Journal of Engineering Mechanics, Volume 123 Issue 2.
[8]William, K.J. Warnke, E.P. (1974).”Constitutive model for the triaxial behavior of concrete”. International Association for Bridges and Structural Engineering, Bergamo, Italy.
[9]Saenz, I.P. “Discussion of equation for the stress-strain curve of concrete, by P. Desay and S. Krishan” . (1964). ACI Journal,61(9):1229-35.
[10]Tedesco, J.W., Ross, C.A., (1998). “Strain-rate-dependent constitutive equations for concrete”. Journal of Pressure Vessel Technology – Transactions of the ASME
[11]Elwi, Alaa A.David W. Murray. (1979). “A 3D Hypoelastic Concrete Constitutive Relationship”. Journal of the Engineering Mechanics Division, Vol. 105, Issue 4, Pg. 623-641
[12]Ottosen, N.S., “Constitutive Model for Short-Time Loading of Concrete,” Journal of the Engineering Mechanics Division, 1979;105(1):127-141
[13]S. S. Hsieh, E. C.Ting and W. F. Chen. (1982). “A plasticity-fracture model for concrete”. School of Civil Engineering, Purdue University, West Lafayette, IN 47907, U.S.A.
[14]Ross, C.A., Thompson, P.Y., Tedesco, J.W., (1989). “Split-Hopkinson pressure-bar tests on concrete and mortar in tension and compression”. ACI Materials Journal 86-M43, 475–481.
[15]Klisinski,M. (1985). “Degradation and Plastic Deformation of Concrete”. IFTR Report 38, Ph.D.thesis, Polish Academy of Sciences.
[16]Kolymbas, D. ”An outline of hypo-plasticity” Arch Appl Mech 1991:6;143-51
[17]Cowell WL. (1966). “Dynamic properties of plain Portland cement concrete”, Technical Report No. R447, US Naval Civil Engineering Laboratory, Port Hueneme, CA.
[18]Hughes, M.L., Tedesco, J.W., Ross, C.A. (1993). “Numerical Analysis of High Strain Rate SplittingTensile Tests,” Computers and Structures, Vol. 47, No. 4/5, 1993, pp. 653-671.
[19]Lekhnitskii,SG. In: Brandstatter JJ, editor. Theory of elasticity of an anisotropic elastic body. San Francisco, CA: Holden-Day.
[20]Kupfer, H.B., and Gerstle, K.H., (1973), “Behavior of Concrete under Biaxial Stresses,” Journal of the Engineering Mechanics Division, Vol.99, pp. 853-866.
[21]Linse, D. H. Aschl. (1976). Versuche zum Verhalten von Beton unter mehrachsiger Beanspruchung. In München durchgeführtes Teilprojekt eines internationalen Vergleichsprogrammes. Versuchsbericht, Lehrstuhl für Massivbau, Technische Universität München.
[22]Bischoff, P.H., Perry, S.H., (1991). Compression behaviour of concrete at high strain rates. Materials and Structures 24, 425–450.
[23]蔡清裕 (2003)。爆炸及撞擊加載下混凝土動態响應的數值模擬。長沙國防科技大學。
[24]I.C. Yeh (1998). Modeling of strength of high performance concrete using artificial neural networks. Cement and Concrete Research, 28:1797–1808.
[25]裘子铭 (2017)。基于Logistic 的混凝土养护时间对其抗压强度影响程度预测。大连海洋大学海洋与土木工程学院。
[26]左曉寶 (2009)。 硫酸盐侵蚀下的混凝土损伤破坏全过。 硅酸盐学报, 37(7): 1063–1067。
[27]杜建民 (2011)。 地下结构混凝土硫酸盐腐蚀机理及性能退化。中国铁道出版社。
[28]E.M.SCHULSON (1999). Journal of the Minerals, Metals, Materials
Society 51
[29]Ivor Hawkes, Malcolm Mellor (1972). “DEFORMATION AND FRACTURE OF ICE UNDER UNIAXIAL STRESS” (U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire 03 755, U.S.A.)
[30]Stephen J. Jones(2007) “A review of the strength of iceberg and other freshwater ice and the effect of temperature” National Research Council of Canada, Institute for Ocean Technology, P.O. Box 12093, Stn. A, St. John′s, NL, Canada A1B 3T5
[31]Balan, ToaderA. Enrico Spacone.Minho Kwon. (2001). A 3D hypoplastic model for cyclic analysis of concrete structures. Engineering Structures, 23 333–342.
[32]Li T, Crouch R. (2010). “A C2 plasticity model for structural concrete”. Computers &Structure; 88: 1322–32.
[33]Xiaobin Lu. (2005). “Uniaxial and tri-axial behavior of high strength concrete with and without steel fibers” New Jersey Institute of Technology in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Civil Engineering.
[34]Chen, W. F. (1988). “Plasticity for structural Engineers”.
[35]Bazant, Z.P., and Kim S.S. (1979). “Plastic-Fracturing Theory for Concrete,” Journal of the Engineering Mechanics Division. 105(3):407-428.
[36]Bazant, Z. P. and Shieh, C.L. (1978). “Endochronic Model for Nonlinear Triaxial Behavior of Concrete,” Nuclear Engineering and Design, Vol. 47, pp. 305-315.
[37]Coon, M.D., D.C. Echert, and G. S. Knoke. (1992). “Pack ice anisotropic constitutive model”, paper presented at IAHR Ice Symposium 1992, Int. Assoc. for Hydraul. Res., Banff, Alberta, Canada.
[38]Coon, M.D., G. S. Knoke, D.C. Echert, and R. S. Pritchard. (1998). “The architecture of an anisotropic elastic-plastic sea ice mechanics constitutive law”. J. Geophys. Res., 103, 21,915-21,925.
[39]Hibler, W. D., III (1979). “A dynamic thermodynamic sea ice model” J. Phys. Oceanogr., 9, 815-846.
[40]Hibler, W. D., III, and C. F. Ip. (1995). “The effect of sea ice theology on Aractic buoy drift, in Ice Mechanics” edited by vol. 207, J. Dempsey and Y. D. S. Rajapakse, pp. 255-263, Am. Soc. of Mech. Eng., New York.
[41]Hibler, W. D., III, and E. M. Schulson. (1997). “On modeling sea ice fracture and flow in numerical investigations of climate” Ann. Glaciol., 25, 26-32.
[42]Azuma, N. (1994). “A flow law for anisotropic ice and its application to ice sheets”, Earth Planet. Sci. ten., 128, 601-614.
[43]Azuma, N. (1995). “A flow law for anisotropic polycrystalline ice under uniaxial compressive deformation” Cold Reg. Sci. and Technol., 23, 137-147
[44]Heil, P., Hibler III, W.D. (2002). “Modelling the high-frequency component of Arctic sea-ice drift and deformation”. Journal of Physical Oceanography 32 (11), 3039–3057.
指導教授 王仲宇(Chung-Yue Wang) 審核日期 2018-11-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明