參考文獻 |
1. 郭明傳,「複合岩體之岩塊體積比量測及其力學行為」,博士論文 (2005)。
2. 劉文智,「以數值模擬層狀岩石巴西試驗」,碩士論文 (2013)。
3. 法麗佳,「針對裂隙岩體裂隙程度(P32)與水利傳導係數之表徵單元體積(REV)進行探討」,碩士論文 (2017)。
4. 許哲睿,「岩體裂隙程度與力學性質之不確定性」,碩士論文 (2017)。
5. Amadei, B., Influence of Rock Anisotropy on Stress Measurements by Overcoring Techniques, Rock Anisotropy and the Theory of Stress Measurements, Springer, Berlin, Heidelberg, pp. 189-241 (1983).
6. Arzúa, J., Alejano, L.R., and Walton, G., “Strength and dilation of jointed granite specimens in servo-controlled triaxial tests,” Int J Rock Mech Min Sci, Vol. 69, pp. 93-104 (2014).
7. Bieniawski, Z.T., “Mechanism of brittle fracture of rock: Part II—experimental studies,” Int J Rock Mech Min Sci, Vol. 4, pp. 407-423 (1967).
8. Brady, B.H.G., and Brown, E.T., FRACMESH -A Program for the Generation of Finite-Element Meshes for the Hydrodynamic Modelling of Fractured Rocks, Nagra (1994).
9. Brady, B.H.G., and Brown, E.T., Rock Mechanics for underground mining, Kluwer Academic Publishers, United States of America, pp. 133-136 (2004).
10. Cundall, P.A., Pierce, M.E., and Ivars, D.M., “Quantifying the Size Effect of Rock Mass Strength,” In: Proceedings of the 1st Southern Hemisphere International Rock Mechanics Symposium, Australian Centre for Geomechanics (ACG), Vol. 2, pp. 3-15, (2008).
11. Dershowitz, W.S., and Schrauf T.S., Discrete Fracture Flow Modeling With The Jinx Package, American Rock Mechanics Association, American (1987).
12. Duan, K., and Kwok, C.Y., “Discrete element modeling of anisotropic rock under Brazilian test conditions,” Int J Rock Mech Min Sci, Vol. 78, pp. 45-56 (2015).
13. Elmo, D., Rogers, S., Stead, D., and Eberhardt, E., “Discrete Fracture Network approach to characterise rock mass fragmentation and implications for geomechanical upscaling,” Mining Technology, Vol.123(3), pp. 149-161 (2014).
14. Elliott, G.M., “An Investigation of a Yield Criterion for Rock,” Ph.D. Dissertation, University of London, United Kingdom (1982).
15. Esmaieli, K., Hadjigeorgiou, J., and Grenon, M., “Estimating geometrical and mechanical REV based on synthetic rock mass models at Brunswick Mine,” Int J Rock Mech Min Sci, Vol. 47, pp. 915-926 (2010).
16. Hawkes, I., and Mellor. M., “Uniaxial testing in rock mechanics laboratories,” Eng Geol, Vol. 4 pp. 179-285 (1970).
17. Hoek, E., and Brown, E.T., Underground Excavations in Rock, Taylor & Francis Group, United States of America (1980).
18. Hoek, E., and Brown, E.T., “The Hoek–Brown failure criterion—a 1988 update,” In: Curran J (ed) Proceedings of the 15th Canadian Rock Mechanics Symposium, University of Toronto, pp 31-38 (1988).
19. H"U" ̈rlimann, W., Splitting risk and premium calculation, Bulletin of the Swiss Association of Actuaries, pp. 229-249 (1994).
20. Herbert, A.W., “Modelling approaches for discrete fracture network flow analysis,” Dev Geotech Eng, Vol. 79, pp. 213-229 (1996).
21. Hutchinson, D.J., and Diederichs M.S., Cablebolting in underground mines, BiTech Publishers, Canada (1996).
22. Huang, D., Wang, J., and Liu, Su., “A comprehensive study on the smooth joint model in DEM simulation of jointed rock masses,” Granular Matter, Vol. 17(6), pp. 775-791 (2015).
23. Ivars, D.M., Pierce, M.E., and Darcel, C., “Anisotropy and scale dependency in jointed rock-mass strength – A Synthetic Rock Mass Study,” In: Proceedings of the 1st International FLAC/DEM Aymposium on Numerical Modeling, pp. 231-239 (2008).
24. Ivars, D.M., Pierce, M.E., Darcel, C., Reyes-Montes, J., Potyondy, D.O., Young, R.P., and Cundall, P.A., “The synthetic rock mass approach for jointed rock mass modelling,” Int J Rock Mech Min Sci, Vol. 48(2), pp. 219-244 (2011).
25. Itasca Consulting Group Inc. PFC3D(particle flow code in 3 dimensions), Version 5.0, MN 55401 (2013).
26. Jaeger, J.C., “Shear failure of anistropic rocks,” Geol Mag, Vol. 97(1) pp. 65-72 (1960).
27. Khanlari, G., Rafiei B., and Abdilor Y., “Evaluation of strength anisotropy and failure modes of laminated sandstones,” Arab J Geosci, Vol. 8, pp. 3089-3102 (2014).
28. Lim, S.S., Martin C.D., and Åkessonb, U., “In-situ stress and microcracking in granite cores with depth,” Eng Geol, Vol. 147-148(12), pp. 1-13 (2012).
29. Martin, C.D., “Seventeenth Canadian Geotechnical Colloquium: The effect of cohesion loss and stress path on brittle rock strength,” Can Geotech J, Vol. 34(5), pp. 698-725 (1997).
30. Min, K.B., and Jing, L., “Stress dependent mechanical properties and bounds of poisson′s ratio for fractured rock masses investigated by a DFN-DEM technique,” Int J Rock Mech Min Sci, Vol. 41, pp. 390-395 (2004).
31. Potyondy, D.O., and Cundall, P.A., “A bonded-particle model for rock,” Int J Rock Mech Min Sci, Vol. 41(8), pp. 1329-1364 (2004).
32. Potyondy, D.O., “Simulating spalling, phase II: feasibility assessment,” Itasca Consulting Group Report to Svensk Karnbranslehantering AB (SKB), Stock- holm, Sweden, ICG09-2502-3F; January (2009).
33. Pierce, M., Ivars, D.M., and Sainsbury, B., “Use of Synthetic Rock Masses (SRM) to Investigate Jointed Rock Mass Strength and Deformation Behavior,” In: Anonymous proceedings of the international conference on rock joints and jointed rock masses, Tucson, Arizona, USA. (2009).
34. Schopfer, M.P.J., Abe, S., Childs, C., and Walsh, J.J., “The impact of porosity and crack density on the elasticity, strength and friction of cohesive granular materials: insights from DEM modeling,” Int J Rock Mech Min Sci, Vol. 46, pp. 250-261 (2009).
35. Scholtès, L., and Donze, F.V., “Modelling progressive failure in fractured rock masses using a 3D discrete element method,” Int J Rock Mech Min Sci, Vol. 52, pp. 18-30 (2012).
36. Tien, Y.M., and Kuo, M.C., “A failure criterion for transversely isotropic rocks,” Int J Rock Mech Min Sci, Vol. 38(3), pp. 399-412 (2001).
37. Tien, Y.M., Kuo, M. C., and Lu, Y.C., “Chapter 16: Failure criteria for transversely isotropic rock,” Rock Mechanics and Engineering, Volume 1: Principles, Ed. Feng, X.T., CRC Press, London, pp. 451-477 (2016).
38. Vazaios, I., Farahmand, K., Vlachopoulos, N., and Diederichs, M.S., “Effects of confinement on rock mass modulus: A synthetic rock mass modelling (SRM) study,” J Rock Mech Geotech, Vol. 10, pp. 436-456 (2018).
39. Wawersik, W.R., and Fairhurst, C., “A study of brittle rock fracture in laboratory compression experiments,” Int J Rock Mech Min Sci, Vol. 7, pp. 561-575 (1970).
40. Wang, T., Xu, D., and Elsworth, D., “Distinct element modeling of strength variation in jointed rock masses under uniaxial compression,” Geomech Geophys Geo-, Vol. 2, pp. 11-24 (2016). |