博碩士論文 105621004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:18.118.120.109
姓名 謝惟任(Wei-Jen Hsieh)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 台灣地區受境外傳輸及本污染影響之雲凝結核特性分析
(Characteristics of cloud condensation nuclei under long-range transport and local pollution in Taiwan)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 大氣氣膠除了散射和吸收太陽輻射,也會改變雲的形成間接影響氣候。雲凝結核的微物理和化學組成對雲的發展和降水過程都為氣候變遷不確定性的主因之一,對此,知曉不同空間、時間分布及環境條件下的雲凝結核特性將有助於提升對不確定性的了解。本研究分為兩個部分,第一部分為2014至2016年於富貴角地區進行三年的觀測實驗,主要觀測東北亞境外傳輸影響下微粒於春冬兩季的吸濕特性;第二部分則是從2017年至2018年於台中地區進行連續觀測,此部分則探討台灣本地污染微粒於秋冬兩季的物化及吸濕特性。
本研究中,雲凝結核的特性以活化率(AR = CCN / CN)來量化分析,由實驗數據顯示,富貴角的風向主要為東北風向及西南風向,歸類東北風向微粒受境外傳輸及無境外污染影響,西南風向則為本地污染。春季東北風向且受境外傳輸時,雲凝結核活化率沒有明顯較無受境外傳輸時期高,與幾何平均粒徑相關性低,且黑碳佔比較低。無境外污染事件影響時,黑碳佔比(BC/PM2.5)數值較冬季集中,且活化率與幾何平均粒徑呈稍正相關;冬季東北風且境外傳輸明顯污染事件發生時,活化率會明顯高於未受境外傳輸時,平均黑碳佔比與粒徑大小負相關較春季明顯,幾何平均粒徑的機率分布變化較春季為寬,且易出現大微粒,可能暗指春季時污染來源可能較為單一但老化程度較弱,而冬季微粒的來源路徑複雜且老化程度較高。無境外污染事件時,黑碳佔比的數值較春季分散。無論有無受境外傳輸影響,活化率與幾何平均粒徑皆有正相關性。西南風向所傳輸的微粒在春冬兩季並無太大差異,推論應該大部分皆是源自於相似污染源,主要為附近漁港的船隻影響。
台中地區實驗期間活化率平均值為0.13,秋季和冬季由十月抵達台灣第一道鋒面的時間來區分。實驗數據顯示秋季的活化率高於冬季。再者,分析兩季節的微粒吸濕特性與風向的關係顯示,活化率和粒徑大小皆南風時為最高,東北風時最低。但黑碳佔比於西北風向時為最高,推測主要受到交通排放影響。本研究亦結合活化率和微粒粒徑分布(PSD)測量結果,估算Petters and Kreidenweis (2007)於Kӧhler理論架構下所提出的吸濕參數(κ)。活化率、粒徑大小和κ的分析顯示台灣中部地區的雲凝結核具有兩組不同的特性。一組顯示粒徑和活化率之間呈高正相關,吸濕參數較高,另一組則呈現相對較弱的相關性,吸濕參數較低。秋季的高吸濕性微粒成分硫化物體積佔比較高,發生的原因推測與溫度或微粒酸鹼值有關;冬季的高吸性微粒則多含較低的黑碳佔比,與境外傳輸資料比較,發現成因可能受境外傳輸影響,其現象也與富貴角相符。
摘要(英) In addition to scattering and absorbing solar radiation, atmospheric aerosols change the formation of clouds and indirectly affect the climate. The microphysical and chemical composition of cloud condensation nuclei is one of the main reasons of climate change and precipitation. It is useful to know the characteristics of cloud condensation nuclei (CCN) under different spatial, temporal distributions and environmental conditions. The study is categorized into two parts. The first part is a three-year observation experiment in Fuguei Cape from 2014 to 2016. This measures hygroscopicity of the particles in the spring and winter seasons under the long-range transport (LRT) from Northeast Asia. The second part is conducted in Taichung from 2017 to 2018. This section explores the physicochemical and hygroscopic properties of local polluted particles in Taiwan during the fall and winter seasons.
In this study, CCN activities are quantified by activation rate (AR = CCN / CN). The experimental data showed that the wind direction of Fuguei Cape is almost northeast wind and southwest wind. Northeast wind particles are composed by LRT and non-LRT. Southwest wind particles are local pollution from Fuguei Cape. In spring, AR of the northeast wind particles under LRT is not significantly higher than that of the non-LRT period. The correlation with the geometric mean diameter (GMD) and AR is low, and the black carbon ratio is relatively low. In non-LRT period, black carbon ratio (BC/PM2.5) is more concentrative than winter, and the AR is slightly positively correlated with the GMD. In winter, AR of northeast wind particles under LRT with obvious pollution event is higher than non-LRT event. And black carbon ratio is negatively correlated with the particle size. The GMD probability distribution is wider than that spring, and it is prone to appear large particles, which may imply the source of pollution in spring may be simple and weaker aging process, while the path in winter is more complex and a higher degree of aging. In non-LRT period, the value of black carbon ratio is more dispersed than spring and AR is positively correlated with the GMD regardless of LRT or non-LRT. On the other hand, the properties of particles in southwest wind are similar in spring and winter seasons. Pollution sources should be the same which mainly originate from the ship emissions in nearby harbor.
The average AR in Taichung area was 0.13, and fall and winter seasons are divided by the time of first cold front arriving Taiwan in October. Experimental data shows that the AR in fall is higher than winter. Furthermore, the analysis of the two seasons and the wind direction shows that the AR and particle size are the highest in the southerly wind and the lowest in the northeast wind. However, black carbon ratio is highest in the northwest wind, and this is mainly affected by traffic emissions. The experimental hygroscopicity, κCCN, proposed by Petters and Kreidenweis (2007) under the scheme of Kӧhler theory was further derived using AR and collocated particle size distribution (PSD) measurements. Analyzing AR, particle size and κ showed that particles in central Taiwan have two different characteristics. One group showed a high positive correlation between GMD and AR, where the hygroscopic parameters are high. The other group showed a relatively weak correlation, where the hygroscopic parameters are low. In fall, higher hygroscopicity particles contain more volume fraction of sulfate, which is presumably related to temperature or PH value of particles; in the winter, higher hygroscopicity particles contain lower portion of black carbon, which is more likely to be affected by LRT. This phenomenon is also consistent with Fuguei Cape.
關鍵字(中) ★ 吸濕性
★ 雲凝結核
★ 柯勒理論
關鍵字(英)
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vii
圖目錄 x
表目錄 xiii
符號說明 xv
第一章 前言 1
1-1 研究動機 1
1-2 研究目的 4
第二章 文獻回顧 5
2-1 雲凝結核之定義及影響 5
2-2 微粒吸濕理論 7
2-2-1 柯勒理論 7
2-2-2 吸濕參數(κ) 8
2-3 微粒化學組成的吸濕特性 15
2-4 微粒於不同條件的吸濕特性 16
2-5 台灣的境外傳輸與本地污染 18
第三章 研究方法 20
3-1 觀測地點的描述與架設 20
3-2 雲凝結核計數器校正方法 24
3-2-1 活化率 (AR) 24
3-2-2 活化粒徑 (Dact) 24
3-2-3 校正程序 24
3-2-3-1 流量校正 24
3-2-3-2 過飽和度校正 27
3-3 吸濕參數的推導計算 34
3-3-1 κChem計算 34
3-3-2 κCCN計算 34
3-4 境外傳輸事件判別基準 36
3-4-1 氣體特性差異的判別方法 36
3-4-2 再分析資料MERRA-2模式模擬 38
第四章 結果與討論 40
4-1 台灣地區境外傳輸討論:2014-2016年期間台灣北端富貴角觀測結果概述 41
4-1-1 氣象特徵 41
4-1-2 富貴角境外傳輸事件定義分析 41
4-1-3 春冬季境外傳輸事件個案分析 47
4-1-3-1 春季境外傳輸事件(2014年) 47
4-1-3-2 冬季境外傳輸事件(2015、2016年) 47
4-1-4 台灣富貴角地區春冬季污染物解析 52
4-1-4-1雲凝結核活化率 52
4-1-4-2 黑碳濃度 52
4-1-5 以風向分析台灣春冬季污染物特性解析 56
4-1-5-1 東北風風向於春冬季微粒特徵 56
4-1-5-2 西南風風向微粒特徵 58
4-1-6 新方法分類境外傳輸與本地污染事件 59
4-2 台灣地區本地污染討論:2017-2018年期間台中地區觀測結果概述 68
4-2-1 台中地區都市微氣象、各測值描述 68
4-2-2 本地污染物於秋冬及三風向特性分析 74
4-2-2-1 秋冬兩季吸濕特性分析 74
4-2-2-2 三風向吸濕特性分析 74
4-2-3 本地污染物化學成分分析 79
4-2-4 吸濕參數κCCN兩季節探討 82
4-2-5 微粒混合狀態 87
第五章 結論與未來展望 89
第六章 參考文獻 92
第七章 附錄 101
參考文獻 楊炳隆,2009:不同地域雲凝結核微物理特性之探討。國立中央大學,大氣物理研究所碩士論文,中壢。
李嘉仁,2017:平流層侵入對東亞地區自由對流層臭氧之影響。國立中央大學,化學研究所碩士論文,中壢。
Almeida, G., Brito, J., Morales, C., Andrade, M. d. F., and Artaxo, P.: Measured and modelled cloud condensation nuclei (CCN) concentration in São Paulo, Brazil: the importance of aerosol size-resolved chemical composition on CCN concentration prediction, Atmospheric Chemistry and Physics, 14, 7559-7572, 2014.
Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A., Frank, G., Longo, K., and Silva-Dias, M.: Smoking rain clouds over the Amazon, science, 303, 1337-1342, 2004.
Bhattu, D., and Tripathi, S.: CCN closure study: Effects of aerosol chemical composition and mixing state, Journal of Geophysical Research: Atmospheres, 120, 766-783, 2015.
Bian, Y., Zhao, C., Ma, N., Chen, J., and Xu, W.: A study of aerosol liquid water content based on hygroscopicity measurements at high relative humidity in the North China Plain, Atmospheric Chemistry and Physics, 14, 6417-6426, 2014.
Bilde, M., and Svenningsson, B.: CCN activation of slightly soluble organics: the importance of small amounts of inorganic salt and particle phase, Tellus B: Chemical and Physical Meteorology, 56, 128-134, 2004.
Blot, R., Clarke, A. D., Freitag, S., Kapustin, V., Howell, S. G., Jensen, J. B., Shank, L. M., McNaughton, C. S., and Brekhovskikh, V.: Ultrafine sea spray aerosol over the southeastern Pacific: open-ocean contributions to marine boundary layer CCN, Atmospheric Chemistry and Physics, 13, 7263-7278, 10.5194/acp-13-7263-2013, 2013.
Bosilovich, M., Lucchesi, R., and Suarez, M.: MERRA-2: File specification, 2015.
Boucher, O., and Lohmann, U.: The sulfate-CCN-cloud albedo effect: a sensitivity study with two general circulation models, Oceanographic Literature Review, 2, 122, 1996.
Brock, C. A., Wagner, N. L., Attwood, A. R., Campuzano-Jost, P., Day, D. A., and Jimenez, J. L.: Aerosol optical properties in the southeastern United States in summer-Part 1: Hygroscopic growth, Atmospheric Chemistry and Physics, 16, 2016.
Burkart, J., Steiner, G., Reischl, G., and Hitzenberger, R.: Long-term study of cloud condensation nuclei (CCN) activation of the atmospheric aerosol in Vienna, Atmospheric Environment, 45, 5751-5759, 10.1016/j.atmosenv.2011.07.022, 2011.
Cappa, C. D., Onasch, T. B., Massoli, P., Worsnop, D. R., Bates, T. S., Cross, E. S., Davidovits, P., Hakala, J., Hayden, K. L., and Jobson, B. T.: Radiative absorption enhancements due to the mixing state of atmospheric black carbon, Science, 337, 1078-1081, 2012.
Castarède, D., and Thomson, E. S.: A thermodynamic description for the hygroscopic growth of atmospheric aerosol particles, Atmospheric Chemistry and Physics Discussions, 1-16, 10.5194/acp-2018-460, 2018.
Chen, J., Zhao, C., Ma, N., and Yan, P.: Aerosol hygroscopicity parameter derived from the light scattering enhancement factor measurements in the North China Plain, Atmospheric Chemistry and Physics, 14, 8105-8118, 2014.
Davis, R. D., Lance, S., Gordon, J. A., Ushijima, S. B., and Tolbert, M. A.: Contact efflorescence as a pathway for crystallization of atmospherically relevant particles, Proceedings of the National Academy of Sciences, 112, 15815-15820, 2015.
Deng, Z., Zhao, C., Ma, N., Liu, P., Ran, L., Xu, W., Chen, J., Liang, Z., Liang, S., and Huang, M.: Size-resolved and bulk activation properties of aerosols in the North China Plain, Atmospheric Chemistry and Physics, 11, 3835-3846, 2011.
Ervens, B., Cubison, M., Andrews, E., Feingold, G., Ogren, J., Jimenez, J., Quinn, P., Bates, T., Wang, J., and Zhang, Q.: CCN predictions using simplified assumptions of organic aerosol composition and mixing state: a synthesis from six different locations, Atmospheric Chemistry and Physics, 10, 4795-4807, 2010.
Farmer, D. K., Cappa, C. D., and Kreidenweis, S. M.: Atmospheric processes and their controlling influence on cloud condensation nuclei activity, Chemical Reviews, 115, 4199-4217, 2015.
Fitzgerald, J., and Hoppel, W.: Measurement of the relationship between the dry size and critical supersaturation of natural aerosol particles, J. Hung. Meteorol. Serv, 86, 242-248, 1982.
Fitzgerald, J. W.: Dependence of the supersaturation spectrum of CCN on aerosol size distribution and composition, Journal of the Atmospheric Sciences, 30, 628-634, 1973.
Florou, K., Papanastasiou, D. K., Pikridas, M., Kaltsonoudis, C., Louvaris, E., Gkatzelis, G. I., Patoulias, D., Mihalopoulos, N., and Pandis, S. N.: The contribution of wood burning and other pollution sources to wintertime organic aerosol levels in two Greek cities, Atmospheric Chemistry and Physics, 17, 3145-3163, 2017.
Furutani, H., Dall’osto, M., Roberts, G. C., and Prather, K. A.: Assessment of the relative importance of atmospheric aging on CCN activity derived from field observations, Atmospheric Environment, 42, 3130-3142, 2008.
Gunthe, S., King, S., Rose, D., Chen, Q., Roldin, P., Farmer, D., Jimenez, J., Artaxo, P., Andreae, M., and Martin, S.: Cloud condensation nuclei in pristine tropical rainforest air of Amazonia: size-resolved measurements and modeling of atmospheric aerosol composition and CCN activity, Atmospheric Chemistry and Physics, 9, 7551-7575, 2009.
Gunthe, S. S., Rose, D., Su, H., Garland, R. M., Achtert, P., Nowak, A., Wiedensohler, A., Kuwata, M., Takegawa, N., Kondo, Y., Hu, M., Shao, M., Zhu, T., Andreae, M. O., and Pöschl, U.: Cloud condensation nuclei (CCN) from fresh and aged air pollution in the megacity region of Beijing, Atmospheric Chemistry and Physics, 11, 11023-11039, 10.5194/acp-11-11023-2011, 2011.
Hasan, H., and Dzubay, T.: Apportioning light extinction coefficients to chemical species in atmospheric aerosol, Atmospheric Environment, 17, 1573-1581, 1983.
Hoek, G., Boogaard, H., Knol, A., De Hartog, J., Slottje, P., Ayres, J. G., Borm, P., Brunekreef, B., Donaldson, K., and Forastiere, F.: Concentration response functions for ultrafine particles and all-cause mortality and hospital admissions: results of a European expert panel elicitation, Environmental science & technology, 44, 476-482, 2009.
Hsu, C.-Y., Chiang, H.-C., Lin, S.-L., Chen, M.-J., Lin, T.-Y., and Chen, Y.-C.: Elemental characterization and source apportionment of PM10 and PM2. 5 in the western coastal area of central Taiwan, Science of the Total Environment, 541, 1139-1150, 2016.
Huang, Y., Chameides, W. L., and Dickinson, R. E.: Direct and indirect effects of anthropogenic aerosols on regional precipitation over east Asia, Journal of Geophysical Research: Atmospheres, 112, 2007.
Hudson, J. G.: An instantaneous CCN spectrometer, Journal of Atmospheric and Oceanic Technology, 6, 1055-1065, 1989.
Hudson, J. G., and Da, X.: Volatility and size of cloud condensation nuclei, Journal of Geophysical Research: Atmospheres, 101, 4435-4442, 1996.
Hung, H.-M., Lu, W.-J., Chen, W.-N., Chang, C.-C., Chou, C. C. K., and Lin, P.-H.: Enhancement of the hygroscopicity parameter kappa of rural aerosols in northern Taiwan by anthropogenic emissions, Atmospheric Environment, 84, 78-87, 10.1016/j.atmosenv.2013.11.032, 2014.
Jaffe, D., Yurganov, L., Pullman, E., Reuter, J., Mahura, A., and Novelli, P.: Measurements of CO and O3 at Shemya, Alaska, Journal of Geophysical Research: Atmospheres, 103, 1493-1502, 1998.
Junge, C.: Das Wachstum der Kondensationskerne mit der relativen Feuchtigkeit, Annalen der Meteorologie, 3, 129-135, 1950.
Junge, C., and McLaren, E.: Relationship of cloud nuclei spectra to aerosol size distribution and composition, Journal of the Atmospheric Sciences, 28, 382-390, 1971.
Köhler, H.: The nucleus in and the growth of hygroscopic droplets, Transactions of the Faraday Society, 32, 1152-1161, 1936.
Kleinman, L. I.: The dependence of tropospheric ozone production rate on ozone precursors, Atmospheric Environment, 39, 575-586, 2005.
Kondo, Y., Takegawa, N., Matsui, H., Miyakawa, T., Koike, M., Miyazaki, Y., Kanaya, Y., Mochida, M., Kuwata, M., and Morino, Y.: Formation and transport of aerosols in Tokyo in relation to their physical and chemical properties: A review, Journal of the Meteorological Society of Japan. Ser. II, 88, 597-624, 2010.
Kostenidou, E., Florou, K., Kaltsonoudis, C., Tsiflikiotou, M., Vratolis, S., Eleftheriadis, K., and Pandis, S.: Sources and chemical characterization of organic aerosol during the summer in the eastern Mediterranean, Atmospheric Chemistry and Physics, 15, 11355-11371, 2015.
Kuang, Y., Zhao, C., Tao, J., and Ma, N.: Diurnal variations of aerosol optical properties in the North China Plain and their influences on the estimates of direct aerosol radiative effect, Atmospheric Chemistry and Physics, 15, 5761-5772, 2015.
Kuwata, M., Kondo, Y., and Takegawa, N.: Critical condensed mass for activation of black carbon as cloud condensation nuclei in Tokyo, Journal of Geophysical Research: Atmospheres, 114, 2009.
Lance, S., Raatikainen, T., Onasch, T. B., Worsnop, D. R., Yu, X.-Y., Alexander, M., Stolzenburg, M., McMurry, P., Smith, J. N., and Nenes, A.: Aerosol mixing state, hygroscopic growth and cloud activation efficiency during MIRAGE 2006, Atmospheric Chemistry and Physics, 13, 5049-5062, 2013.
Lathem, T. L., and Nenes, A.: Water vapor depletion in the DMT continuous-flow CCN chamber: Effects on supersaturation and droplet growth, Aerosol Science and Technology, 45, 604-615, 2011.
Leng, C., Cheng, T., Chen, J., Zhang, R., Tao, J., Huang, G., Zha, S., Zhang, M., Fang, W., and Li, X.: Measurements of surface cloud condensation nuclei and aerosol activity in downtown Shanghai, Atmospheric environment, 69, 354-361, 2013.
Li, W., Shao, L., Shi, Z., Chen, J., Yang, L., Yuan, Q., Yan, C., Zhang, X., Wang, Y., and Sun, J.: Mixing state and hygroscopicity of dust and haze particles before leaving Asian continent, Journal of Geophysical Research: Atmospheres, 119, 1044-1059, 2014.
Lin, C.-Y., Liu, S. C., Chou, C. C., Liu, T. H., Lee, C.-T., Yuan, C.-S., Shiu, C.-J., and Young, C.-Y.: Long-range transport of Asian dust and air pollutants to Taiwan, Terrestrial Atmospheric and Oceanic Sciences, 15, 759-784, 2004.
Lin, C.-Y., Liu, S. C., Chou, C. C.-K., Huang, S.-J., Liu, C.-M., Kuo, C.-H., and Young, C.-Y.: Long-range transport of aerosols and their impact on the air quality of Taiwan, Atmospheric Environment, 39, 6066-6076, 2005.
Low, R. D.: A generalized equation for the solution effect in droplet growth, Journal of the Atmospheric Sciences, 26, 608-611, 1969.
Martin, S. T.: Phase transitions of aqueous atmospheric particles, Chemical Reviews, 100, 3403-3454, 2000.
Massoli, P., Lambe, A., Ahern, A., Williams, L., Ehn, M., Mikkilä, J., Canagaratna, M., Brune, W., Onasch, T., and Jayne, J.: Relationship between aerosol oxidation level and hygroscopic properties of laboratory generated secondary organic aerosol (SOA) particles, Geophysical Research Letters, 37, 2010.
Matsui, H., Koike, M., Kondo, Y., Takegawa, N., Fast, J. D., Pöschl, U., Garland, R., Andreae, M., Wiedensohler, A., and Sugimoto, N.: Spatial and temporal variations of aerosols around Beijing in summer 2006: 2. Local and column aerosol optical properties, Journal of Geophysical Research: Atmospheres, 115, 2010.
McDonald, J. E.: Erroneous cloud-phy sics applications of raoult′s law, Journal of Meteorology, 10, 68-70, 1953.
McMeeking, G., Good, N., Petters, M., McFiggans, G., and Coe, H.: Influences on the fraction of hydrophobic and hydrophilic black carbon in the atmosphere, Atmospheric Chemistry and Physics, 11, 5099-5112, 2011.
McMurry, P. H.: A review of atmospheric aerosol measurements, Atmospheric Environment, 34, 1959-1999, 2000.
Mei, F., Hayes, P. L., Ortega, A., Taylor, J. W., Allan, J. D., Gilman, J., Kuster, W., Gouw, J., Jimenez, J. L., and Wang, J.: Droplet activation properties of organic aerosols observed at an urban site during CalNex-LA, Journal of Geophysical Research: Atmospheres, 118, 2903-2917, doi:10.1002/jgrd.50285, 2013.
Mertes, S., Lehmann, K., Nowak, A., Massling, A., and Wiedensohler, A.: Link between aerosol hygroscopic growth and droplet activation observed for hill-capped clouds at connected flow conditions during FEBUKO, Atmospheric Environment, 39, 4247-4256, 2005.
Nenes, A., Chuang, P. Y., Flagan, R. C., and Seinfeld, J. H.: A theoretical analysis of cloud condensation nucleus (CCN) instruments, Journal of Geophysical Research: Atmospheres, 106, 3449-3474, 2001.
Olivier, J., Bouwman, A., Berdowski, J., Veldt, C., Bloos, J., Visschedijk, A., Van der Maas, C., and Zandveld, P.: Sectoral emission inventories of greenhouse gases for 1990 on a per country basis as well as on 1× 1, Environmental Science & Policy, 2, 241-263, 1999.
Padró, L., Moore, R., Zhang, X., Rastogi, N., Weber, R., and Nenes, A.: Mixing state and compositional effects on CCN activity and droplet growth kinetics of size-resolved CCN in an urban environment, Atmospheric Chemistry and Physics, 12, 10239-10255, 2012.
Peng, J., Hu, M., Wang, Z., Huang, X., Kumar, P., Wu, Z., Guo, S., Yue, D., Shang, D., and Zheng, Z.: Submicron aerosols at thirteen diversified sites in China: size distribution, new particle formation and corresponding contribution to cloud condensation nuclei production, Atmospheric Chemistry and Physics, 14, 10249-10265, 2014.
Petters, M., and Kreidenweis, S.: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity, Atmospheric Chemistry and Physics, 7, 1961-1971, 2007.
Pruppacher, H. R., and Klett, J. D.: Microphysics of Clouds and Precipitation: Reprinted 1980, Springer Science & Business Media, 2012.
Rissler, J., Vestin, A., Swietlicki, E., Fisch, G., Zhou, J., Artaxo, P., and Andreae, M.: Size distribution and hygroscopic properties of aerosol particles from dry-season biomass burning in Amazonia, Atmospheric Chemistry and Physics, 6, 471-491, 2006.
Rose, D., Gunthe, S., Mikhailov, E., Frank, G., Dusek, U., Andreae, M. O., and Pöschl, U.: Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment, Atmospheric Chemistry and Physics, 8, 1153-1179, 2008.
Rosenfeld, D., Lohmann, U., Raga, G. B., O′Dowd, C. D., Kulmala, M., Fuzzi, S., Reissell, A., and Andreae, M. O.: Flood or drought: how do aerosols affect precipitation?, Science, 321, 1309-1313, 2008.
Saxena, P., Hildemann, L. M., McMurry, P. H., and Seinfeld, J. H.: Organics alter hygroscopic behavior of atmospheric particles, Journal of Geophysical Research: Atmospheres, 100, 18755-18770, 1995.
Saxena, V., Burford, J., and Kassner Jr, J.: Operation of a thermal diffusion chamber for measurements on cloud condensation nuclei, Journal of the Atmospheric Sciences, 27, 73-80, 1970.
Seinfeld, J. H., and Pandis, S. N.: Atmospheric chemistry and physics: from air pollution to climate change, John Wiley & Sons, 2012.
Seinfeld, J. H., Bretherton, C., Carslaw, K. S., Coe, H., DeMott, P. J., Dunlea, E. J., Feingold, G., Ghan, S., Guenther, A. B., and Kahn, R.: Improving our fundamental understanding of the role of aerosol− cloud interactions in the climate system, Proceedings of the National Academy of Sciences, 113, 5781-5790, 2016.
Seinfeld, J. H., and Pandis, S. N.: Atmospheric chemistry and physics: from air pollution to climate change, John Wiley & Sons, 2016.
Semeniuk, T. A., Wise, M. E., Martin, S. T., Russell, L. M., and Buseck, P. R.: Water uptake characteristics of individual atmospheric particles having coatings, Atmospheric Environment, 41, 6225-6235, 2007.
Shao, M., Tang, X., Zhang, Y., and Li, W.: City clusters in China: air and surface water pollution, Frontiers in Ecology and the Environment, 4, 353-361, 2006.
Shulman, M. L., Jacobson, M. C., Carlson, R. J., Synovec, R. E., and Young, T. E.: Dissolution behavior and surface tension effects of organic compounds in nucleating cloud droplets, Geophysical Research Letters, 23, 277-280, 1996.
Sihto, S.-L., Mikkilä, J., Vanhanen, J., Ehn, M., Liao, L., Lehtipalo, K., Aalto, P., Duplissy, J., Petäjä, T., and Kerminen, V.-M.: Seasonal variation of CCN concentrations and aerosol activation properties in boreal forest, Atmospheric Chemistry and Physics, 11, 13269-13285, 2011.
Solomon, S.: Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC, Cambridge university press, 2007.
Souto-Oliveira, C. E., Andrade, M. d. F., Kumar, P., Lopes, F. J. d. S., Babinski, M., and Landulfo, E.: Effect of vehicular traffic, remote sources and new particle formation on the activation properties of cloud condensation nuclei in the megacity of São Paulo, Brazil, Atmospheric Chemistry and Physics, 16, 14635-14656, 10.5194/acp-16-14635-2016, 2016.
Stein, A., Draxler, R. R., Rolph, G. D., Stunder, B. J., Cohen, M., and Ngan, F.: NOAA’s HYSPLIT atmospheric transport and dispersion modeling system, Bulletin of the American Meteorological Society, 96, 2059-2077, 2015.
Stevens, B., and Feingold, G.: Untangling aerosol effects on clouds and precipitation in a buffered system, Nature, 461, 607, 2009.
Stock, M., Cheng, Y., Birmili, W., Massling, A., Wehner, B., Müller, T., Leinert, S., Kalivitis, N., Mihalopoulos, N., and Wiedensohler, A.: Hygroscopic properties of atmospheric aerosol particles over the Eastern Mediterranean: implications for regional direct radiative forcing under clean and polluted conditions, Atmospheric Chemistry and Physics, 11, 4251-4271, 2011.
Streets, D. G., Bond, T., Carmichael, G., Fernandes, S., Fu, Q., He, D., Klimont, Z., Nelson, S., Tsai, N., and Wang, M. Q.: An inventory of gaseous and primary aerosol emissions in Asia in the year 2000, Journal of Geophysical Research: Atmospheres, 108, 2003.
Streets, D. G., Yu, C., Wu, Y., Chin, M., Zhao, Z., Hayasaka, T., and Shi, G.: Aerosol trends over China, 1980–2000, Atmospheric Research, 88, 174-182, 2008.
Swietlicki, E., HANSSON, H. C., Hämeri, K., Svenningsson, B., Massling, A., McFiggans, G., McMurry, P., Petäjä, T., Tunved, P., and Gysel, M.: Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H‐TDMA instruments in various environments—A review, Tellus B: Chemical and Physical Meteorology, 60, 432-469, 2008.
Takemura, T., Uno, I., Nakajima, T., Higurashi, A., and Sano, I.: Modeling study of long‐range transport of Asian dust and anthropogenic aerosols from East Asia, Geophysical Research Letters, 29, 2002.
Tang, I.: Phase transformation and growth of aerosol particles composed of mixed salts, Journal of Aerosol Science, 7, 361-371, 1976.
Tang, I., Munkelwitz, H., and Davis, J.: Aerosol growth studies—IV. Phase transformation of mixed salt aerosols in a moist atmosphere, Journal of Aerosol Science, 9, 505-511, 1978.
Tang, I., Wong, W., and Munkelwitz, H.: The relative importance of atmospheric sulfates and nitrates in visibility reduction, Atmospheric Environment, 15, 2463-2471, 1981.
Tao, J., Zhao, C., Ma, N., and Liu, P.: The impact of aerosol hygroscopic growth on the single-scattering albedo and its application on the NO 2 photolysis rate coefficient, Atmospheric Chemistry and Physics, 14, 12055-12067, 2014.
Thalman, R., de Sá, S. S., Palm, B. B., Barbosa, H. M. J., Pöhlker, M. L., Alexander, M. L., Brito, J., Carbone, S., Castillo, P., Day, D. A., Kuang, C., Manzi, A., Ng, N. L., Sedlacek Iii, A. J., Souza, R., Springston, S., Watson, T., Pöhlker, C., Pöschl, U., Andreae, M. O., Artaxo, P., Jimenez, J. L., Martin, S. T., and Wang, J.: CCN activity and organic hygroscopicity of aerosols downwind of an urban region in central Amazonia: seasonal and diel variations and impact of anthropogenic emissions, Atmospheric Chemistry and Physics, 17, 11779-11801, 10.5194/acp-17-11779-2017, 2017.
Titos, G., Cazorla, A., Zieger, P., Andrews, E., Lyamani, H., Granados-Muñoz, M. J., Olmo, F., and Alados-Arboledas, L.: Effect of hygroscopic growth on the aerosol light-scattering coefficient: A review of measurements, techniques and error sources, Atmospheric Environment, 141, 494-507, 2016.
Tseng, K.-H., Wang, J.-L., Cheng, M.-T., and Tsuang, B.-J.: Assessing the relationship between air mass age and summer ozone episodes based on photochemical indices, Aerosol and Air Quality Resarch, 9, 149-171, 2009.
Twomey, S.: The influence of pollution on the shortwave albedo of clouds, Journal of the Atmospheric Sciences, 34, 1149-1152, 1977.
Wallace, J. M., and Hobbs, P. V.: Atmospheric science: an introductory survey, Elsevier, 2006.
Wang, J., Cubison, M., Aiken, A., Jimenez, J., and Collins, D.: The importance of aerosol mixing state and size-resolved composition on CCN concentration and the variation of the importance with atmospheric aging of aerosols, Atmospheric Chemistry and Physics, 10, 7267-7283, 2010.
Wang, Y., Hopke, P. K., Rattigan, O. V., and Zhu, Y.: Characterization of ambient black carbon and wood burning particles in two urban areas, Journal of Environmental Monitoring, 13, 1919-1926, 2011.
Wang, Z., Cheng, Y., Ma, N., Mikhailov, E., Pöschl, U., and Su, H.: Dependence of the hygroscopicity parameter κ on particle size, humidity and solute concentration: implications for laboratory experiments, field measurements and model studies, Atmospheric Chemistry and Physics Discussions, 1-33, 10.5194/acp-2017-253, 2017.
Watson, J. G.: Visibility: Science and regulation, Journal of the Air & Waste Management Association, 52, 628-713, 2002.
Xiaohong, L., and Jian, W.: How important is organic aerosol hygroscopicity to aerosol indirect forcing?, Environmental Research Letters, 5, 044010, 2010.
Yau, M. K., and Rogers, R.: A short course in cloud physics, Elsevier, 1996.
Young, K. C.: Microphysical processes in clouds, Oxford University Press, 1993.
Yue, D., Hu, M., Zhang, R., Wu, Z., Su, H., Wang, Z., Peng, J., He, L., Huang, X., and Gong, Y.: Potential contribution of new particle formation to cloud condensation nuclei in Beijing, Atmospheric Environment, 45, 6070-6077, 2011.
Yum, S. S., Hudson, J. G., Song, K. Y., and Choi, B. C.: Springtime cloud condensation nuclei concentrations on the west coast of Korea, Geophysical research letters, 32, 2005.
Zhang, F., Li, Y., Li, Z., Sun, L., Li, R., Zhao, C., Wang, P., Sun, Y., Liu, X., and Li, J.: Aerosol hygroscopicity and cloud condensation nuclei activity during the AC 3 Exp campaign: implications for cloud condensation nuclei parameterization, Atmospheric Chemistry and Physics, 14, 13423-13437, 2014.
Zhang, F., Wang, Y., Peng, J., Ren, J., Collins, D., Zhang, R., Sun, Y., Yang, X., and Li, Z.: Uncertainty in predicting CCN activity of aged and primary aerosols, Journal of Geophysical Research: Atmospheres, 2017a.
Zhang, Q., Quan, J., Tie, X., Li, X., Liu, Q., Gao, Y., and Zhao, D.: Effects of meteorology and secondary particle formation on visibility during heavy haze events in Beijing, China, Science of The Total Environment, 502, 578-584, 2015.
Zhang, S., Ma, N., Kecorius, S., Wang, P., Hu, M., Wang, Z., Größ, J., Wu, Z., and Wiedensohler, A.: Mixing state of atmospheric particles over the North China Plain, Atmospheric Environment, 125, 152-164, 2016.
Zhang, Z., Shen, Y., Li, Y., Zhu, B., and Yu, X.: Analysis of extinction properties as a function of relative humidity using a κ-EC-Mie model in Nanjing, Atmospheric Chemistry and Physics, 17, 4147-4157, 2017b.
Zhao, D., Buchholz, A., Kortner, B., Schlag, P., Rubach, F., Kiendler‐Scharr, A., Tillmann, R., Wahner, A., Flores, J., and Rudich, Y.: Size‐dependent hygroscopicity parameter (κ) and chemical composition of secondary organic cloud condensation nuclei, Geophysical research letters, 42, 10,920-910,928, 2015.
Zieger, P., Fierz-Schmidhauser, R., Weingartner, E., and Baltensperger, U.: Effects of relative humidity on aerosol light scattering: results from different European sites, Atmospheric Chemistry and Physics, 13, 10609-10631, 2013.
指導教授 林能暉 蕭大智 審核日期 2018-10-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明